https://vjudge.net/problem/TopCoder-15135

之前做过:本质不同的回文子序列个数

本题:位置不同即为不同。

如果还是设$f[l][r]$表示$l$,$r$结尾,就难受了。转移就已经是$O(n^2)$了

所以,$f[l][r]$表示,$[l,r]$的回文子序列个数

$f[l][r]=f[l+1][r]+f[l][r-1]-f[l+1][r-1]+(a[l]==a[r])*(f[l+1][r-1]+1)$

一个区间DP

但是要循环1e9次

但是其实,不管区间长度为多少,一共只有50种取值

所以,f[i][len]表示,扩展到长度为len的区间,[i,i+len-1]的子序列个数

显然i只有50个

然后矩乘转移即可。

100的size,因为还有len-2

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
#define pii pair<int,int>
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);(fl==true)&&(x=-x);}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');}
namespace Modulo{
const int mod=1e9+;
il int ad(int x,int y){return x+y>=mod?x+y-mod:x+y;}
il int sub(int x,int y){return ad(x,mod-y);}
il int mul(int x,int y){return (ll)x*y%mod;}
il void inc(int &x,int y){x=ad(x,y);}
il void inc2(int &x,int y){x=mul(x,y);}
il int qm(int x,int y=mod-){int ret=;while(y){if(y&) ret=mul(x,ret);x=mul(x,x);y>>=;}return ret;}
template<class ...Args>il int ad(const int a,const int b,const Args &...args) {return ad(ad(a,b),args...);}
template<class ...Args>il int mul(const int a,const int b,const Args &...args) {return mul(mul(a,b),args...);}
}
using namespace Modulo;
const int N=;
int n,m;
struct tr{
int a[N][N];
tr(){memset(a,,sizeof a);}
void init(){
for(reg i=;i<=m;++i){
a[i][i]=;
}
}
tr friend operator *(const tr &a,const tr &b){
tr c;
for(reg k=;k<=m;++k){
for(reg i=;i<=m;++i){
for(reg j=;j<=m;++j){
inc(c.a[i][j],mul(a.a[i][k],b.a[k][j]));
}
}
}
return c;
}
}S,A,B,C;
tr qm(tr A,ll y){
tr ret;
memset(ret.a,,sizeof ret.a);
ret.init();
while(y){
if(y&) ret=ret*A;
A=A*A;
y>>=;
}return ret;
}
class LongPalindromes{
public:
int count(int T,string s){
int n=s.length();
if(n==) return qm(,T);
m=n*;
//0~n-1
//n~m-1
//a[0][m]=1
for(reg i=;i<=n-;++i){
A.a[i][i]=;
A.a[(i+)%n][i]=;
A.a[i][i+n]=;
}
A.a[m][m]=;
B.init();
for(reg len=;len<=n;++len){
C=A;
for(reg i=;i<n;++i){
C.a[(i+)%n+n][i]=sub((s[i]==s[(i+len-)%n]),);
C.a[m][i]=(s[i]==s[(i+len-)%n]);
}
B=B*C;
}
S.a[][m]=;
S=S*qm(B,T);
// printf("%d\n",
return ad(S.a[][],);
}
};

相同的保留一份即可。减少状态。利于矩乘。

TopCoder - 15135 LongPalindromes的更多相关文章

  1. TopCoder kawigiEdit插件配置

    kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...

  2. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  3. TopCoder比赛总结表

    TopCoder                        250                              500                                 ...

  4. Topcoder几例C++字符串应用

    本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...

  5. TopCoder

    在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...

  6. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  7. 求拓扑排序的数量,例题 topcoder srm 654 div2 500

    周赛时遇到的一道比较有意思的题目: Problem Statement      There are N rooms in Maki's new house. The rooms are number ...

  8. TopCoder SRM 590

     第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement     Fox Ciel is going to play Gomoku with her friend ...

  9. Topcoder Arena插件配置和训练指南

    一. Arena插件配置 1. 下载Arena 指针:http://community.topcoder.com/tc?module=MyHome 左边Competitions->Algorit ...

随机推荐

  1. LOJ 6435 「PKUSC2018」星际穿越——DP+倍增 / 思路+主席树

    题目:https://loj.ac/problem/6435 题解:https://www.cnblogs.com/HocRiser/p/9166459.html 自己要怎样才能想到怎么做呢…… dp ...

  2. 【靶场练习_sqli-labs】SQLi-LABS Page-2 (Adv Injections)

    Less-21:括号+单引号绕过+base64cookie编码 总感觉我已经把sql注入做成代码审计了:P <?php //including the Mysql connect paramet ...

  3. Linux 虚拟机通过NAT模式访问外网

    1.配置本地VM8地址   2.配置虚拟机NAT网卡:设置VM8网卡地址和Linux主机相同网段地址,网关随便设置   3.编译网卡文件 vim /etc/sysconfig/network-scri ...

  4. Maven之自定义pom类型的基础项目

    摘要:在当前的软件开发场景中,大都是通过maven管理项目,而如果使用maven的话,其实也会有很多问题,比如项目中依赖的版本管理就是一个很头疼的事,如果一个项目中有很多人同时开发那么这就很可能造成大 ...

  5. linux: 如何查看端口占用?

    查看端口占用 $: netstat -anp | grep 8888 tcp 0 0 127.0.0.1:8888 0.0.0.0:* LISTEN 13404/python3 tcp 0 1 172 ...

  6. nlp学习笔记

    https://mp.weixin.qq.com/s/-w4gENfBt2gKOPvghenw9w

  7. vue搭建项目之设置axios

    首先要下载axios: npm install axios -S 要注意的是,axios不支持Vue.use();这种方式,可以改写原型链. 第二步就是新建axios存放位置: 在项目中src中单独建 ...

  8. zabbix4.0部署

    1.环境检查 uname -r getenforce systemctl status firewalld.service 2.设置解析,自建yum源(可选) /etc/hosts #!/bin/ba ...

  9. 在线常用库 + API手册

    以下链接经过本人测试,均可正常访问 jQuery: http://apps.bdimg.com/libs/jquery/2.1.4/jquery.min.js bootsrap: http://app ...

  10. 【读书笔记】:MIT线性代数(5):Four fundamental subspaces

    At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...