https://vjudge.net/problem/TopCoder-15135

之前做过:本质不同的回文子序列个数

本题:位置不同即为不同。

如果还是设$f[l][r]$表示$l$,$r$结尾,就难受了。转移就已经是$O(n^2)$了

所以,$f[l][r]$表示,$[l,r]$的回文子序列个数

$f[l][r]=f[l+1][r]+f[l][r-1]-f[l+1][r-1]+(a[l]==a[r])*(f[l+1][r-1]+1)$

一个区间DP

但是要循环1e9次

但是其实,不管区间长度为多少,一共只有50种取值

所以,f[i][len]表示,扩展到长度为len的区间,[i,i+len-1]的子序列个数

显然i只有50个

然后矩乘转移即可。

100的size,因为还有len-2

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
#define pii pair<int,int>
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);(fl==true)&&(x=-x);}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');}
namespace Modulo{
const int mod=1e9+;
il int ad(int x,int y){return x+y>=mod?x+y-mod:x+y;}
il int sub(int x,int y){return ad(x,mod-y);}
il int mul(int x,int y){return (ll)x*y%mod;}
il void inc(int &x,int y){x=ad(x,y);}
il void inc2(int &x,int y){x=mul(x,y);}
il int qm(int x,int y=mod-){int ret=;while(y){if(y&) ret=mul(x,ret);x=mul(x,x);y>>=;}return ret;}
template<class ...Args>il int ad(const int a,const int b,const Args &...args) {return ad(ad(a,b),args...);}
template<class ...Args>il int mul(const int a,const int b,const Args &...args) {return mul(mul(a,b),args...);}
}
using namespace Modulo;
const int N=;
int n,m;
struct tr{
int a[N][N];
tr(){memset(a,,sizeof a);}
void init(){
for(reg i=;i<=m;++i){
a[i][i]=;
}
}
tr friend operator *(const tr &a,const tr &b){
tr c;
for(reg k=;k<=m;++k){
for(reg i=;i<=m;++i){
for(reg j=;j<=m;++j){
inc(c.a[i][j],mul(a.a[i][k],b.a[k][j]));
}
}
}
return c;
}
}S,A,B,C;
tr qm(tr A,ll y){
tr ret;
memset(ret.a,,sizeof ret.a);
ret.init();
while(y){
if(y&) ret=ret*A;
A=A*A;
y>>=;
}return ret;
}
class LongPalindromes{
public:
int count(int T,string s){
int n=s.length();
if(n==) return qm(,T);
m=n*;
//0~n-1
//n~m-1
//a[0][m]=1
for(reg i=;i<=n-;++i){
A.a[i][i]=;
A.a[(i+)%n][i]=;
A.a[i][i+n]=;
}
A.a[m][m]=;
B.init();
for(reg len=;len<=n;++len){
C=A;
for(reg i=;i<n;++i){
C.a[(i+)%n+n][i]=sub((s[i]==s[(i+len-)%n]),);
C.a[m][i]=(s[i]==s[(i+len-)%n]);
}
B=B*C;
}
S.a[][m]=;
S=S*qm(B,T);
// printf("%d\n",
return ad(S.a[][],);
}
};

相同的保留一份即可。减少状态。利于矩乘。

TopCoder - 15135 LongPalindromes的更多相关文章

  1. TopCoder kawigiEdit插件配置

    kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...

  2. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  3. TopCoder比赛总结表

    TopCoder                        250                              500                                 ...

  4. Topcoder几例C++字符串应用

    本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...

  5. TopCoder

    在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...

  6. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  7. 求拓扑排序的数量,例题 topcoder srm 654 div2 500

    周赛时遇到的一道比较有意思的题目: Problem Statement      There are N rooms in Maki's new house. The rooms are number ...

  8. TopCoder SRM 590

     第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement     Fox Ciel is going to play Gomoku with her friend ...

  9. Topcoder Arena插件配置和训练指南

    一. Arena插件配置 1. 下载Arena 指针:http://community.topcoder.com/tc?module=MyHome 左边Competitions->Algorit ...

随机推荐

  1. 如何在浏览器上安装 VueDevtools工具

    火狐浏览器直接打开附加组件中,搜索 VueDevtools,找到安装即可. 谷歌浏览器--更多工具--扩展程序--打开下载好的VueDevtools整体拖进去就行了

  2. BUUCTF | [SUCTF 2019]EasySQL (堆叠注入)

    fuzz ing了一下,发现了一堆过滤: 同时发现了注入点,这个应该是var_dump()函数 ===============第二天的分割线 好吧我放弃了,找了一下wp 正确解:select 1;se ...

  3. Modular arithmetic and Montgomery form 实现快速模乘

    题目: 电音之王 题解: 求数列前n项相乘并取模 思路: ①.这题的乘法是爆long long的,可以通过快速幂的思想去解决(按数位对其中的一个数进行剖分).当然你的乘法会多出一个log的复杂度... ...

  4. Workflow:Workflow 百科

    ylbtech-Workflow:Workflow 百科 工作流(Workflow),指“业务过程的部分或整体在计算机应用环境下的自动化”.是对工作流程及其各操作步骤之间业务规则的抽象.概括描述.在计 ...

  5. gradle 国内加速,修改镜像源

    为什么慢 由于默认情况下执行 gradle 各种命令是去国外的 gradle 官方镜像源获取需要安装的具体软件信息,所以在不使用代理.不翻墙的情况下,从国内访问国外服务器的速度相对比较慢 如何修改镜像 ...

  6. python排序算法-冒泡和快速排序,解答阿里面试题

    ''常见的排序算法\ 插入排序/希尔排序/直接排序/堆排序 冒泡排序/快速排序/归序排序/基数排序 给定一个列表,将这个列表进行排序,要求:> 时间复杂度要小于O(n^2) 复杂度:1.时间复杂 ...

  7. trizip haskell implementation

    1 trizip :: [a] -> [b] -> [c] -> [(a,b,c)] 2 trizip a b c 3 | null a = [] 4 | null b = [] 5 ...

  8. Java + selenium 元素定位(5)之By Xpath

    这篇关于Xpath方法的文章和之前那篇CSS的方法一样,使用前,需要先掌握一些Xpath的相关知识.当然,网上也有各种工具可以帮助我们获取到元素的Xpath,但是这并不代表着我们就可以不用了解Xpat ...

  9. VB - 修改注册表

    Vbs中修改注册表的语句主要有: 1.读注册表的关键词和值: 可以通过把关键词的完整路径传递给wshshell对象的regread方法.例如: set ws=wscript.createobject( ...

  10. go语言统计字符个数

    具体代码如下: package main import "fmt" func main() { m := make(map[rune]int, 1) var input strin ...