辗转相除法 & 裴蜀定理
2018-03-11 17:39:22
一、辗转相除法
在数学中,辗转相除法,又称欧几里得算法(英语:Euclidean algorithm),是求最大公约数的算法。
证明:
记gcd(a, b) = d
r = a - bk,r 是b对a的余数,由于a是d的倍数,b是d的倍数,k是整数,那么r必是d的倍数。
因此gcd(a, b) == gcd(b, a % b)
private int gcd(int x, int y) {
return y == 0 ? x : gcd(y, x % y);
}
二、扩展欧几里得 / 贝祖定理
定理:等式 ax + by = c (其中a,b,c均是整数)存在整数解的充要条件是c % gcd(a, b) == 0,也就是说c是a,b最大公约数的倍数。
证明:
记gcd(a, b) = d
辗转相除的过程如下
a / b = s1 ... r1
b / r1 = s2 ... r2
r1 / r2 = s3 ... r3
...
rn - 1 / rn = sn + 1 ... rn + 1
rn / rn + 1 = sn + 2 ... d
现在开始反代,
d = rn - rn + 1 * sn +2
此时,d是可以通过rn,rn + 1组合得到。
将rn + 1消掉
d = rn - (rn - 1 - rn * sn + 1)
此时,d是可以通过rn - 1,rn 组合得到。
同理消除,最后d可以通过a,b组合得到。
三、Water and Jug Problem
问题描述:
有两个容量分别为 x升 和 y升 的水壶以及无限多的水。请判断能否通过使用这两个水壶,从而可以得到恰好 z升 的水?
如果可以,最后请用以上水壶中的一或两个来盛放取得的 z升 水。
你允许:
装满任意一个水壶
清空任意一个水壶
从一个水壶向另外一个水壶倒水,直到装满或者倒空
示例 1: (From the famous "Die Hard" example)
输入: x = 3, y = 5, z = 4
输出: True
示例 2:
输入: x = 2, y = 6, z = 5
输出: False
问题求解:
如果单纯的去思考两个杯子之间的倒来倒去,那么问题就会变得非常复杂。有一种简化思路是,考虑有一个大的杯子,而x,y只是向大杯子中添加或者取出水,如果最终大杯子中数目等于给定的数,那么返回true。
其实就是寻找z = ax + by等式是否有解,也就是规约到了裴蜀定理的概念中,只需要判断z % gcd(x, y)即可。
public boolean canMeasureWater(int x, int y, int z) {
if (x + y < z) return false;
if (x == z || y == z || x + y == z) return true;
return z % gcd(x, y) == 0;
} private int gcd(int x, int y) {
return y == 0 ? x : gcd(y, x % y);
}
辗转相除法 & 裴蜀定理的更多相关文章
- bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理
题目 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1< ...
- 欧几里得算法(gcd) 裴蜀定理 拓展欧几里得算法(exgcd)
欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ ...
- 【BZOJ-2299】向量 裴蜀定理 + 最大公约数
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1118 Solved: 488[Submit][Status] ...
- 【BZOJ-1441】Min 裴蜀定理 + 最大公约数
1441: Min Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 471 Solved: 314[Submit][Status][Discuss] De ...
- BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)
一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...
- 【BZOJ】1441: Min(裴蜀定理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理
2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】
2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1326 Solved: 815[Submit][Stat ...
- 【Wannafly挑战赛22A计数器】【裴蜀定理】
https://www.nowcoder.com/acm/contest/160/A 题目描述 有一个计数器,计数器的初始值为0,每次操作你可以把计数器的值加上a1,a2,...,an中的任意一个整数 ...
随机推荐
- postgresql----SELECT
示例1.简单查询 使用*查询表所有的字段,也可以指定字段名查询 test=# select * from tbl_insert; a | b ---+---- | sd | ff ( rows) te ...
- Pentaho Report Designer 数据大于某值显示红色
在细节栏中的字段的属性, 在样式的text-color,右边的表达式 输入下面表达式即可! =IF( [ALL_VALUE] > 50 ; "black" ; IF([ALL ...
- codeforces#505--B Weakened Common Divisor
B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...
- Spring boot官方文档学习(一)
个人说明:本文内容都是从为知笔记上复制过来的,样式难免走样,以后再修改吧.另外,本文可以看作官方文档的选择性的翻译(大部分),以及个人使用经验及问题. 其他说明:如果对Spring Boot没有概念, ...
- Systemd unit generators unit
systemd.generator(7) - Linux manual page http://man7.org/linux/man-pages/man7/systemd.generator.7.ht ...
- nginx:服务器集群
一.Nginx的事件处理机制 对于一个基本的web服务器来说,事件通常有三种类型,网络事件.信号.定时器. 首先看一个请求的基本过程:建立连接---接收数据---发送数据 . 再次看系统底层的操作 : ...
- 模拟百度云盘版的ftp
思路:一.分两个大的文件夹,一个是客户端,一个服务端的 二.实现的功能 1. 登陆--对用户名的合法性进行检测(实验账户:alex,123) 注册--设置账户,其中 ...
- Openstack(八)部署镜像服务glance
8.1glance镜像服务介绍 Glance是OpenStack镜像服务组件,glance服务默认监听在9292端口,其接收REST API请求,然后通过其他模块(glance-registry及im ...
- HDU1575:Tr A(矩阵快速幂模板题)
http://acm.hdu.edu.cn/showproblem.php?pid=1575 #include <iostream> #include <string.h> ...
- 一个很大的文件,存放了10G个整数的乱序数列,如何用程序找出中位数。
一.梳理审题 一.看清题目: 注意这个题目的量词,这个文件中有10G个整数,而不是这个文件占了10G的内存空间. 二.一些疑问: 在计算机中我们讲的G.M等都是存储容量的概念,但是一般都会在会面加上B ...