转:pairwise 代码参考
Learning to rank with scikit-learn: the pairwise transform
tags: pythonscikit-learnranking
This tutorial introduces the concept of pairwise preference used in most ranking problems. I'll use scikit-learn and for learning and matplotlib for visualization.
In the ranking setting, training data consists of lists of items with some order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item, so that for any two samples a
and b
, either a < b
, b > a
or b
and a
are not comparable.
For example, in the case of a search engine, our dataset consists of results that belong to different queries and we would like to only compare the relevance for results coming from the same query.
This order relation is usually domain-specific. For instance, in information retrieval the set of comparable samples is referred to as a "query id". The goal behind this is to compare only documents that belong to the same query (Joachims 2002). In medical imaging on the other hand, the order of the labels usually depend on the subject so the comparable samples is given by the different subjects in the study (Pedregosa et al 2012).
import itertools
import numpy as np
from scipy import stats
import pylab as pl
from sklearn import svm, linear_model, cross_validation
To start with, we'll create a dataset in which the target values consists of three graded measurements Y = {0, 1, 2} and the input data is a collection of 30 samples, each one with two features.
The set of comparable elements (queries in information retrieval) will consist of two equally sized blocks, X=X1∪X2, where each block is generated using a normal distribution with different mean and covariance. In the pictures, we represent X1 with round markers and X2 with triangular markers.
np.random.seed(0)
theta = np.deg2rad(60)
w = np.array([np.sin(theta), np.cos(theta)])
K = 20
X = np.random.randn(K, 2)
y = [0] * K
for i in range(1, 3):
X = np.concatenate((X, np.random.randn(K, 2) + i * 4 * w))
y = np.concatenate((y, [i] * K)) # slightly displace data corresponding to our second partition
X[::2] -= np.array([3, 7])
blocks = np.array([0, 1] * (X.shape[0] / 2)) # split into train and test set
cv = cross_validation.StratifiedShuffleSplit(y, test_size=.5)
train, test = iter(cv).next()
X_train, y_train, b_train = X[train], y[train], blocks[train]
X_test, y_test, b_test = X[test], y[test], blocks[test] # plot the result
idx = (b_train == 0)
pl.scatter(X_train[idx, 0], X_train[idx, 1], c=y_train[idx],
marker='^', cmap=pl.cm.Blues, s=100)
pl.scatter(X_train[~idx, 0], X_train[~idx, 1], c=y_train[~idx],
marker='o', cmap=pl.cm.Blues, s=100)
pl.arrow(0, 0, 8 * w[0], 8 * w[1], fc='gray', ec='gray',
head_width=0.5, head_length=0.5)
pl.text(0, 1, '$w$', fontsize=20)
pl.arrow(-3, -8, 8 * w[0], 8 * w[1], fc='gray', ec='gray',
head_width=0.5, head_length=0.5)
pl.text(-2.6, -7, '$w$', fontsize=20)
pl.axis('equal')
pl.show()
In the plot we clearly see that for both blocks there's a common vector w such that the projection onto w gives a list with the correct ordering.
However, because linear considers that output labels live in a metric space it will consider that all pairs are comparable. Thus if we fit this model to the problem above it will fit both blocks at the same time, yielding a result that is clearly not optimal. In the following plot we estimate w^ using an l2-regularized linear model.
ridge = linear_model.Ridge(1.)
ridge.fit(X_train, y_train)
coef = ridge.coef_ / linalg.norm(ridge.coef_)
pl.scatter(X_train[idx, 0], X_train[idx, 1], c=y_train[idx],
marker='^', cmap=pl.cm.Blues, s=100)
pl.scatter(X_train[~idx, 0], X_train[~idx, 1], c=y_train[~idx],
marker='o', cmap=pl.cm.Blues, s=100)
pl.arrow(0, 0, 7 * coef[0], 7 * coef[1], fc='gray', ec='gray',
head_width=0.5, head_length=0.5)
pl.text(2, 0, '$\hat{w}$', fontsize=20)
pl.axis('equal')
pl.title('Estimation by Ridge regression')
pl.show()
To assess the quality of our model we need to define a ranking score. Since we are interesting in a model that ordersthe data, it is natural to look for a metric that compares the ordering of our model to the given ordering. For this, we use Kendall's tau correlation coefficient, which is defined as (P - Q)/(P + Q), being P the number of concordant pairs and Q is the number of discordant pairs. This measure is used extensively in the ranking literature (e.g Optimizing Search Engines using Clickthrough Data).
We thus evaluate this metric on the test set for each block separately.
for i in range(2):
tau, _ = stats.kendalltau(
ridge.predict(X_test[b_test == i]), y_test[b_test == i])
print('Kendall correlation coefficient for block %s: %.5f' % (i, tau))
Kendall correlation coefficient for block 0: 0.71122
Kendall correlation coefficient for block 1: 0.84387
The pairwise transform
As proved in (Herbrich 1999), if we consider linear ranking functions, the ranking problem can be transformed into a two-class classification problem. For this, we form the difference of all comparable elements such that our data is transformed into (x′k,y′k)=(xi−xj,sign(yi−yj)) for all comparable pairs.
This way we transformed our ranking problem into a two-class classification problem. The following plot shows this transformed dataset, and color reflects the difference in labels, and our task is to separate positive samples from negative ones. The hyperplane {x^T w = 0} separates these two classes.
# form all pairwise combinations
comb = itertools.combinations(range(X_train.shape[0]), 2)
k = 0
Xp, yp, diff = [], [], []
for (i, j) in comb:
if y_train[i] == y_train[j] \
or blocks[train][i] != blocks[train][j]:
# skip if same target or different group
continue
Xp.append(X_train[i] - X_train[j])
diff.append(y_train[i] - y_train[j])
yp.append(np.sign(diff[-1]))
# output balanced classes
if yp[-1] != (-1) ** k:
yp[-1] *= -1
Xp[-1] *= -1
diff[-1] *= -1
k += 1
Xp, yp, diff = map(np.asanyarray, (Xp, yp, diff))
pl.scatter(Xp[:, 0], Xp[:, 1], c=diff, s=60, marker='o', cmap=pl.cm.Blues)
x_space = np.linspace(-10, 10)
pl.plot(x_space * w[1], - x_space * w[0], color='gray')
pl.text(3, -4, '$\{x^T w = 0\}$', fontsize=17)
pl.axis('equal')
pl.show()
As we see in the previous plot, this classification is separable. This will not always be the case, however, in our training set there are no order inversions, thus the respective classification problem is separable.
We will now finally train an Support Vector Machine model on the transformed data. This model is known as RankSVM. We will then plot the training data together with the estimated coefficient w^ by RankSVM.
clf = svm.SVC(kernel='linear', C=.1)
clf.fit(Xp, yp)
coef = clf.coef_.ravel() / linalg.norm(clf.coef_)
pl.scatter(X_train[idx, 0], X_train[idx, 1], c=y_train[idx],
marker='^', cmap=pl.cm.Blues, s=100)
pl.scatter(X_train[~idx, 0], X_train[~idx, 1], c=y_train[~idx],
marker='o', cmap=pl.cm.Blues, s=100)
pl.arrow(0, 0, 7 * coef[0], 7 * coef[1], fc='gray', ec='gray',
head_width=0.5, head_length=0.5)
pl.arrow(-3, -8, 7 * coef[0], 7 * coef[1], fc='gray', ec='gray',
head_width=0.5, head_length=0.5)
pl.text(1, .7, '$\hat{w}$', fontsize=20)
pl.text(-2.6, -7, '$\hat{w}$', fontsize=20)
pl.axis('equal')
pl.show()
Finally we will check that as expected, the ranking score (Kendall tau) increases with the RankSVM model respect to linear regression.
for i in range(2):
tau, _ = stats.kendalltau(
np.dot(X_test[b_test == i], coef), y_test[b_test == i])
print('Kendall correlation coefficient for block %s: %.5f' % (i, tau))
Kendall correlation coefficient for block 0: 0.83627
Kendall correlation coefficient for block 1: 0.84387
This is indeed higher than the values (0.71122, 0.84387) obtained in the case of linear regression.
Original ipython notebook for this blog post can be found here
"Large Margin Rank Boundaries for Ordinal Regression", R. Herbrich, T. Graepel, and K. Obermayer. Advances in Large Margin Classifiers, 115-132, Liu Press, 2000 ↩
"Optimizing Search Engines Using Clickthrough Data", T. Joachims. Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), ACM, 2002. ↩
"Learning to rank from medical imaging data", Pedregosa et al. [arXiv] ↩
"Efficient algorithms for ranking with SVMs", O. Chapelle and S. S. Keerthi, Information Retrieval Journal, Special Issue on Learning to Rank, 2009 ↩
Comments !
转:pairwise 代码参考的更多相关文章
- Session id实现通过Cookie来传输方法及代码参考
1. Web中的Session指的就是用户在浏览某个网站时,从进入网站到浏览器关闭所经过的这段时间,也就是用户浏览这个网站所花费的时间.因此从上述的定义中我们可以看到,Session实际上是一个特定的 ...
- Jquery 代码参考
jquery 代码参考 jQuery(document).ready(function($){}); jQuery(window).on('load', function(){}); $('.vide ...
- php 修改后端代码参考
后端代码参考:
- 【原创】C#模拟Post请求,正文为json数据的代码参考
由于之前一直在做键值对post数据的提交,没遇到过json正文的提交,遇到的问题截图: 对于此种情况的post,我用 谷歌插件 PostMan 模拟试了下成功了,截图如下: Postman插件在你选择 ...
- 公共代码参考(Volley)
Volley 是google提供的一个网络库,相对于自己写httpclient确实方便很多,本文参考部分网上例子整理如下,以作备忘: 定义一个缓存类: public class BitmapCache ...
- 固定表头/锁定前几列的代码参考[JS篇]
引语:做有难度的事情,才是成长最快的时候.前段时间,接了一个公司的稍微大点的项目,急着赶进度,本人又没有独立带过队,因此,把自己给搞懵逼了.总是没有多余的时间来做自己想做的事,而且,经常把工作带入生活 ...
- C语言实现冒泡排序法和选择排序法代码参考
为了易用,我编写排序函数,这和直接在主调函数中用是差不多的. 我认为选择排序法更好理解!请注意 i 和 j ,在写代码时别弄错了,不然很难找到错误! 冒泡排序法 void sort(int * ar, ...
- .OpenWrt驱动程序Makefile的分析概述 、驱动程序代码参考、以及测试程序代码参考
# # # include $(TOPDIR)/rules.mk //一般在 Makefile 的开头 include $(INCLUDE_DIR)/kernel.mk // 文件对于 软件包为内核时 ...
- Flex组件参考 代码参考汇总
1:tourdeflex快速熟悉各种组件用法的参考http://www.adobe.com/devnet/flex/tourdeflex.html在线:http://www.adobe.com/dev ...
随机推荐
- 【LG4103】[HEOI2014]大工程
[LG4103][HEOI2014]大工程 题面 洛谷 题解 先建虚树,下面所有讨论均是在虚树上的. 对于第一问:直接统计所有树边对答案的贡献即可. 对于第\(2,3\)问:记\(f[x]\)表示在\ ...
- Azkaban系统的安装和分析。
Azkaban系统是一个数据处理的很好用的工具,可以用来运行hadoop任务,管理hdfs,可以进行schedule任务调度,总体来说功能还是很强大的. 研究了一下azkaban,做了以下总结性的东西 ...
- 解读python手册的例子a, b = b, a+b
Python手册上有个例子,用于输出10以内的斐波那契序列.代码如下: a, b = 0, 1 while b < 10: print(b) a, b = b, a+b 用到了一些Python的 ...
- HTTP简单教程
目录 HTTP简介 HTTP工作原理 HTTP消息结构 客户端请求消息 服务器响应消息 实例 HTTP请求方法 HTTP响应头信息 HTTP状态码 HTTP状态码分类 HTTP状态码列表 HTTP c ...
- Select 、Poll 和 Epoll
作用 Epoll 和 Select 的作用都是为了多I/O同步复用的问题,利用Epoll.Poll或Select函数指定内核监听多个I/O的读.写.异常事件,避免每一个I/O都指定一个处理线程,导致开 ...
- 袋鼠云研发手记 | 开源·数栈-扩展FlinkSQL实现流与维表的join
作为一家创新驱动的科技公司,袋鼠云每年研发投入达数千万,公司80%员工都是技术人员,袋鼠云产品家族包括企业级一站式数据中台PaaS数栈.交互式数据可视化大屏开发平台Easy[V]等产品也在迅速迭代.在 ...
- SQL中NULL的妙用
商品表Products 库房表WarehouseDistrict 库存表WarehouseStock 一般写法 ;WITH stock AS ( SELECT DistrictId, ProductI ...
- centos7.2 apache开启.htaccess
打开httpd.conf(在那里? APACHE目录的CONF目录里面),用文本编纂器打开后,查找 (1) AllowOverride None 改为 AllowOverride All (2)去掉下 ...
- JS 数组方法 array数组声明 元素的添加和删除 等
声明数组 var arr1 = [1,2,3,4,5]; var arr2 = new Array(100); //声明长度为100的arr2数组. arr2=[]; arr2.length = 10 ...
- pat甲级1002
1002. A+B for Polynomials (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue T ...