\(\Delta\)以下内容主要为《线性代数》的学习笔记

按行列展开

一般来说,低阶行列式的计算比高阶行列式的计算要简单得多,因此考虑用低阶行列式来表示高阶行列式。为此,我们引入余子式和代数余子式的概念。
相当于对行列式进行降阶处理以方便运算

定义

余子式:
在\(n\)阶行列式中,把\((i, j)\)元\(a_{ij}\)所在的第\(i\)行和第\(j\)列划去后(相当于用1代替),留下来的\(n - 1\)阶行列式叫做\((i, j)\)元的\(a_{ij}\)的余子式,记做\(M_{ij}\);

代数余子式:
记:
\[A_{ij} = (-1)^{i + j}M_{ij}\]
则把\(A_{ij}\)叫做\((i, j)\)元\(a_{ij}\)的代数余子式。

引理

一个\(n\)阶行列式,如果其中第\(i\)行所有元素除\((i, j)\)元\(a_{ij}\)外都为零,那么这行列式等于\(a_{ij}\)与它的代数余子式的乘积,即:
\[D = A_{ij}\].

定理2

行列式按行(列)展开法则:行列式等于它任意行(列)的各元素与其对应的代数余子式乘积之和,即:
\[ D = a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in}\]

\[D = a_{1j}A_{1j} + a_{2j}A_{2j} + ... + a_{nj}A_{nj}\]
推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即:
\[a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in} = 0,\quad i \ne j\]

\[a_{1i}A_{1i} + a_{2i}A_{2i} + ... + a_{ni}A_{ni} = 0,\quad i \ne j\]

综合定理2及其推论,可以得到有关代数余子式的重要性质:

\[\sum_{k = 1}^{n}a_{ki}A_{ki} =
\begin{cases}
D, \quad i = j\\
0, \quad i \ne j
\end{cases}\]

\[\sum_{k = 1}^{n}a_{ik}A_{ik} =
\begin{cases}
D, \quad i = j\\
0, \quad i \ne j
\end{cases}\]

行列式(二):余子式&代数余子式的更多相关文章

  1. 矩阵&行列式

    # 代数 排列 对换,对于一个排列操作,对于一个偶排列一次对换之后变为奇排列 反之变为偶排列 行列式 N阶行列式室友N^2个数aij(i,j = 1,2,3,...n) 行列式的数=\(\sum_ { ...

  2. 行列式计算(C#)

    最近几天学习高等代数老师说要写个程序算行列式的结果,闲来无事就简单写了一下. 不多说了,上代码 using System; using System.Collections.Generic; usin ...

  3. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  4. 【learning】矩阵树定理

    问题描述 给你一个图(有向无向都ok),求这个图的生成树个数 一些概念 度数矩阵:\(a[i][i]=degree[i]\),其他等于\(0\) 入度矩阵:\(a[i][i]=in\_degree[i ...

  5. multivariate_normal 多元正态分布

    多元正态分布 正态分布大家都非常熟悉了,多元正态分布就是多维数据的正态分布,其概率密度函数为 上式为 x 服从 k 元正态分布,x 为 k 维向量:|Σ| 代表协方差矩阵的行列式 二维正态分布概率密度 ...

  6. 标准方程法_岭回归_LASSO算法_弹性网

    程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8 ...

  7. MIT线性代数:19.行列式和代数余子式

  8. 基于上三角变换或基于DFS的行(列)展开的n阶行列式求值算法分析及性能评估

    进入大一新学期,看完<线性代数>前几节后,笔者有了用计算机实现行列式运算的想法.这样做的目的,一是巩固自己对相关概念的理解,二是通过独立设计算法练手,三是希望通过图表直观地展现涉及的两种算 ...

  9. c++实现矩阵类矩阵行列式,伴随矩阵,逆矩阵

    //Matrix ver1.0 //只支持矩阵内部(方阵)的运算 #include<iostream> #include<math.h> using namespace std ...

随机推荐

  1. SaltStack入门篇(六)之部署Redis主从实现和Job管理

    一.部署Redis主从 需求: 192.168.56.11是主,192.168.56.12是从 redis监听自己的ip地址,而不是0.0.0.0 分析: linux-node1 安装 配置 启动 l ...

  2. .NET core 项目部署在windows 服务器方法以及iis 访问报 500.19错误的解决办法

    将本地发布的服务本地运行没问题,发布上云windows 服务器就报 500.19 0x8007000d 是因为云服务器没有安装.net core相关的插件,比如.NET CORE sdk等,请按照该文 ...

  3. Entity Framework中的几种加载方式

            在Entity Framework中有三种加载的方式,分别是延迟加载,自动加载和显示加载.下面用一个例子来说明:现在有两个表,一个是资料表(Reference),另外一个表是资料分类表 ...

  4. replace与replaceAll的区别

    这两者有些人很容易搞混,因此我在这里详细讲述下. replace的参数是char和CharSequence,即可以支持字符的替换,也支持字符串的替换(CharSequence即字符串序列的意思,说白了 ...

  5. Entity Framework for Oracle 基本配置

    1.需要安装ODAC 如果不安装ODAC,在数据源连接的配置中,看不到Oracle的选项 我下载安装的组件是32-bit Oracle Data Access Components (ODAC)  w ...

  6. CentOS 6.5关闭防火墙

    关闭命令:  service iptables stop 永久关闭防火墙:chkconfig iptables off 两个命令同时运行,运行完成后查看防火墙关闭状态 service iptables ...

  7. linux、WINDOWS命令行下查找和统计行数

    linux : 例子: netstat -an | grep TIME_WAIT | wc -l |  管道符 grep 查找命令 wc 统计命令 windows: 例子: netstat -an | ...

  8. webgl 包围盒子

    包围盒子是鼠标选择物体的一种实现方式,当从相机出发,经过鼠标点形成的射线和物体的包围盒子相交时,就代表物体被选中

  9. Angular7运行机制--根据腾讯课堂米斯特吴 《Angular4从入门到实战》学习笔记分析完成

  10. Python基础入门(迭代器和生成器)

    1 Python迭代器 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束. 迭代器只能往前不会后退. 迭代器有两个基本的方法:iter() 和 ...