【BZOJ3437】小P的牧场(动态规划,斜率优化)
【BZOJ3437】小P的牧场(动态规划,斜率优化)
题面
题解
考虑暴力\(dp\),设\(f[i]\)表示强制在\(i\)处建立控制站的并控制\([1..i]\)的最小代价。
很显然,枚举上一个控制站的位置\(j\)
\(f[i]=min(f[j]+Calc(i,j)+a[i])\),其中\(Calc(i,j)\)表示\(i,j\)之间被\(i\)控制的位置产生的贡献。
这个可以用前缀和优化做到\(O(1)\)计算\(Calc\)
预处理\(s1[i]=\sum b[i],s2[i]=\sum (n-i+1)*b[i]\)
那么\(Calc(i,j)=s2[i]-s2[j]-(s1[i]-s1[j])*(n-i+1)\)
考虑两个位置\(j,k\),满足\(k\lt j\),并且\(k\)的转移劣于\(j\)
那么
\(f[k]+Calc(i,k)\gt f[j]+Calc(i,j)\)
拆开之后是:
\(f[k]-s2[k]+s1[k]*(n-i+1)\gt f[j]-s2[j]+s1[j]*(n-i+1)\)
令\(g[i]=f[i]-s2[i]+s1[i]*(n+1)\)
将所有项按照是否与\(i\)相关分类,可以得到
\((g[k]-g[j])\gt (s1[k]-s1[j])*i\)
因为\(k<j\),所以\(s1[k]<s1[j]\),除过去要变号
\]
妥妥的斜率优化,因为\(i\)单增,可以单调队列解决。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define RG register
#define MAX 1000100
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,a[MAX],b[MAX];
int Q[MAX],h,t;
ll f[MAX],s1[MAX],s2[MAX];
ll calc(int i,int j){return f[j]+s2[i]-s2[j]-(s1[i]-s1[j])*(n-i+1)+a[i];}
double Slope(int j,int k)
{
double gj=f[j]-s2[j]+1.0*s1[j]*(n+1);
double gk=f[k]-s2[k]+1.0*s1[k]*(n+1);
return 1.0*(gj-gk)/(s1[j]-s1[k]);
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)b[i]=read();
for(int i=1;i<=n;++i)s1[i]=s1[i-1]+b[i];
for(int i=1;i<=n;++i)s2[i]=s2[i-1]+1ll*(n-i+1)*b[i];
Q[h=t=1]=0;
for(int i=1;i<=n;++i)
{
while(h<t&&Slope(Q[h],Q[h+1])<=i)++h;
int j=Q[h];f[i]=calc(i,j);
while(h<t&&Slope(Q[t],Q[t-1])>=Slope(Q[t-1],i))--t;
Q[++t]=i;
}
printf("%lld\n",f[n]);
}
【BZOJ3437】小P的牧场(动态规划,斜率优化)的更多相关文章
- BZOJ3437 小P的牧场 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8696321.html 题目传送门 - BZOJ3437 题意 给定两个序列$a,b$,现在划分$a$序列. 被划 ...
- bzoj3437 小P的牧场(斜率优化dp)
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2025 Solved: 1110[Submit][Status][Discu ...
- BZOJ3437 小P的牧场 【斜率优化dp】
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1502 Solved: 836 [Submit][Status][Disc ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- BZOJ 3437 小P的牧场(斜率优化DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...
- bzoj 3437: 小P的牧场【斜率优化】
emmm妹想到要倒着推 先假设只在n建一个控制站,这样的费用是\( \sum_{i=1}^{n} b[i]*(n-i) \)的 然后设f[i]为在i到n键控制站,并且i一定建一个,能最多节省下的费用, ...
- bzoj3437小P的牧场
bzoj3437小P的牧场 题意: n个牧场,在每个牧场见控制站的花费为ai,在该处建控制站能控制从此处到左边第一个控制站(或边界)之间的牧场.一个牧场被控制的花费等于它到控制它的控制站之间的牧场数目 ...
- 【学习笔记】动态规划—斜率优化DP(超详细)
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...
- bzoj3437小P的牧场 斜率优化dp
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1542 Solved: 849[Submit][Status][Discus ...
- BZOJ3437:小P的牧场(斜率优化DP)
Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...
随机推荐
- a data verification error occurred, file load failed
1. 调试创龙DSP6748的时候,下载.out文件出现这个错误 2. 换了其他板子,还有其他仿真器也不行,最后发现是没加载GEL文件
- HTTP请求方式:GET和POST的比较
GET和POST是HTTP的两个常用方法 什么是HTTP? 超文本传输协议(HyperText Transfer Prptocol-HTTP)是一个设计来使客户端和服务器顺利进行通讯的协议. HTTP ...
- Entity Framework for Oracle 基本配置
1.需要安装ODAC 如果不安装ODAC,在数据源连接的配置中,看不到Oracle的选项 我下载安装的组件是32-bit Oracle Data Access Components (ODAC) w ...
- 建表/修改表名/增加删除字段(MySql)
修改表名:alter table 旧表名 rename 新表名; 删除字段:alter table 表名 drop 字段名; 增加字段:alter table 表名 add 字段名 字段类型 [def ...
- How to Manage Amazon-Fulfilled Orders - Cancel an Amazon-Fulfilled Order
You may request to cancel customer orders that have a status of "Pending" or "Unshipp ...
- eBay推Winit海外仓 鼓励卖家拓展北美市场
[亿邦动力网讯]2月11日消息,日前,跨境电商平台eBay与外贸电商服务商万邑通(Winit)合作,针对平台卖家推出了Winit美国海外仓,鼓励卖家拓展北美市场. 亿邦动力网获悉,Winit美国海外仓 ...
- AutoCAD2015激活码和密钥
CAD2015序列号和密钥 序列号: 666-69696969 产品密钥: 001G1 序列号: 356-72378422 产品密钥: 206G1 安装说明 ...
- 重构:越来越长的 switch ... case 和 if ... else if ... else
在代码中,时常有就一类型码(Type Code)而展开的如 switch ... case 或 if ... else if ... else 的条件表达式.随着项目业务逻辑的增加及代码经年累月的修改 ...
- Java反编译插件
一.eclipse->help->Eclipse Marketplace 如下图:搜索JadClipse,install进行下载安装,
- Github三次学习
作者声明:本文参照aicoder.com马伦老师的文档,根据自己的学习情况而做的笔记,仅供交流学习. Git入门到高级教程 为什么要进行项目文件的版本管理 代码备份和恢复 团队开发和协作流程 项目分支 ...