BZOJ3782 上学路线 【dp + Lucas + CRT】
题目链接
题解
我们把终点也加入障碍点中,将点排序,令\(f[i]\)表示从\((0,0)\)出发,不经过其它障碍,直接到达\((x_i,y_i)\)的方案数
首先我们有个大致的方案数\({x_i + y_i \choose x_i}\)
但是中途可能会经过一些其它障碍点,那么就减去
所以
\]
由于坐标很大,又观察到一种模数不大,一种模数为合数,且最大质因子也不大
所以可以\(Lucas\)定理 + CRT合并
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 205,maxm = 1000005,INF = 1000000000;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL N,M,T,P;
struct point{LL x,y;}p[maxn];
inline bool operator <(const point& a,const point& b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
int pr[10],pi;
LL fac[5][maxm],fv[5][maxm],inv[5][maxm];
void sp(){
int x = P;
for (int i = 2; i * i <= x; i++)
if (x % i == 0){
pr[++pi] = i;
x /= i;
}
if (x - 1) pr[++pi] = x;
}
void init(){
for (int j = 1; j <= pi; j++){
fac[j][0] = fac[j][1] = fv[j][0] = fv[j][1] = inv[j][0] = inv[j][1] = 1;
int p = pr[j];
for (int i = 2; i < pr[j]; i++){
fac[j][i] = 1ll * fac[j][i - 1] * i % p;
inv[j][i] = 1ll * (p - p / i) * inv[j][p % i] % p;
fv[j][i] = 1ll * fv[j][i - 1] * inv[j][i] % p;
}
}
}
LL Lucas(LL n,LL m,int p){
if (m > n) return 0;
if (n < pr[p] && m < pr[p])
return 1ll * fac[p][n] * fv[p][m] % pr[p] * fv[p][n - m] % pr[p];
return 1ll * Lucas(n % pr[p],m % pr[p],p) * Lucas(n / pr[p],m / pr[p],p) % pr[p];
}
LL C(LL n,LL m){
if (m > n) return 0;
LL re = 0;
for (int i = 1; i <= pi; i++){
re = (re + 1ll * Lucas(n,m,i) * (P / pr[i]) % P * inv[i][P / pr[i] % pr[i]] % P) % P;
}
return re;
}
LL f[maxn];
int main(){
N = read(); M = read(); T = read(); P = read();
sp(); init(); //REP(i,pi) printf("%d ",pr[i]); puts("");
REP(i,T) p[i].x = read(),p[i].y = read();
++T;
p[T].x = N,p[T].y = M;
sort(p + 1,p + T + 1);
for (int i = 1; i <= T; i++){
f[i] = C(p[i].x + p[i].y,p[i].x);
for (int j = 1; j < i; j++)
if (p[j].x <= p[i].x && p[j].y <= p[i].y)
f[i] = (f[i] - 1ll * f[j] * C(p[i].x - p[j].x + p[i].y - p[j].y,p[i].x - p[j].x) % P) % P;
f[i] = (f[i] + P) % P;
if (p[i].x == N && p[i].y == M){
printf("%lld\n",f[i]);
}
}
return 0;
}
BZOJ3782 上学路线 【dp + Lucas + CRT】的更多相关文章
- bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...
- 【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理
题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的 ...
- bzoj3782上学路线
题意:从n*m网格图的左下角走到右上角(n,m<=10^10),有t个坐标不能经过(t<=200),只能向上向右走,问有多少种不同的走法,对p取模, p只有两种取值,1000003(质数) ...
- BZOJ 3782 上学路线 ——动态规划 Lucas定理 中国剩余定理
我们枚举第一个经过的坏点,然后DP即可. 状态转移方程不是难点,难点在于组合数的处理. 将狼踩尽的博客中有很详细的证明过程,但是我只记住了结论 $n=a_1 * p^k+a_2*p^k-1...$ $ ...
- BZOJ3782 上学路线
设障碍个数为,\(obs\)则一般的容斥复杂度为\(O(2^{obs})\).但因为这个题是网格图,我们可以用DP解.设\(f[i]\)表示不经过任何障碍到达第\(i\)个障碍的方案数,转移时枚举可以 ...
- Luogu P4478 [BJWC2018]上学路线 卢卡斯+组合+CRT
首先,从$(0,0)$走到$(n,m)$的方案数是$ C_{n+m}^n$,可以把走的方向看作一种序列,这个序列长$ n+m$ ,你需要从中任取$n$个位置,让他向右走: 然后就是如何处理不能走的点: ...
- BZOJ 3782: 上学路线 [Lucas定理 DP]
3782: 上学路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 192 Solved: 75[Submit][Status][Discuss] ...
- 【BZOJ3782】上学路线 组合数+容斥+CRT
[BZOJ3782]上学路线 Description 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不 ...
- bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp
LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=10000 ...
随机推荐
- 在BAE上部署Pomelo
BAE升级到3.0后顿时感觉好用了很多,俨然云主机的感觉. 底下我将分享我在BAE上部署Pomelo的过程. 首先需要拥有一个BAE的执行单元.没有的可以自行百度并部署. 接着svn得出代码到本地.此 ...
- Scrapy爬取美女图片第三集 代理ip(下)
这是我的公众号获取原创保护的首篇文章,原创的肯定将支持我继续前行.现在写这篇文章的时间是晚上11:30,写完就回寝室休息了,希望更多的朋友与我一起同行(当然需要一个善良的妹子的救济).(我的新书< ...
- javaweb(三十七)——获得MySQL数据库自动生成的主键
测试脚本如下: 1 create table test1 2 ( 3 id int primary key auto_increment, 4 name varchar(20) 5 ); 测试代码: ...
- tomcat7以上的版本,400BadRequest
出现此原因的解决办法其一,详情可见: https://www.cnblogs.com/dygrkf/p/9088370.html. 另一种解决方法,就是把url中不允许出现的字符编码,后台接收时再解码 ...
- 牛客小白月赛9H论如何出一道水题(两个连续自然数互质)
题面 记录一下...连续得两个自然数互质,这题再特判一下1的情况 #include<bits/stdc++.h> using namespace std; int main() { lon ...
- GitHub 多人协作开发 三种方式:
GitHub 多人协作开发 三种方式: 一.Fork 方式 网上介绍比较多的方式(比较大型的开源项目,比如cocos2d-x) 开发者 fork 自己生成一个独立的分支,跟主分支完全独立,pull代码 ...
- dubbo 微服务
# spring-dubbo-service 微服务 项目地址:https://github.com/windwant/spring-dubbo-service spring dubbo servic ...
- 785. Is Graph Bipartite?
Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...
- Zabbix远程执行命令
原文发表于cu:2016-06-14 Zabbix触发器(trigger)达到阀值后会有动作(action)执行:发送告警信息或执行远程命令. 本文主要配置验证zabbix执行远程命令. 一.环境 S ...
- eos对数据库的操作
eosio的multi_index 概述 multi_index是eosio上的数据库管理接口,通过eosio::multi_index智能合约能够写入.读取和修改eosio数据库的数据 multi_ ...