Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1412.2306
Main Points:
- An Alignment Model: Convolutional Neural Networks over image regions ( An image -> RCNN -> Top 19 detected locations in addition to the whole image -> the representations based on the pixels Ib inside each bounding box -> a set of h-dimensional vectors {vi | i = 1 ... 20} ), Bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding ( CNN - Structured Objective - BiRNN ).
- A Multimodal Recurrent Neural Network architecture: On the image side, Convolutional Neural Networks ( CNNs ) have recently emerged as a powerful class of models for image classification and object detection. On the sentence side, our work takes advantage of pretrained word vectors to obtain low-dimensional representations of words. Finally, Recurrent Neural Networks have been previously used in language modeling, but we additionally condition these models on images.
- Authors use bidirectional recurrent neural network to compute word representations in the sentence, dispensing of the need to compute dependency trees and allowing unbounded interactions of words and their context in the sentence.


Other Key Points:
- The primary challenge towards generating descriptions of images is in the design of a model that is rich enough to simultaneously reason about contents of images and their representation in the domain of natural language. Additionally, the model should be free of assumptions about specific hard-coded templates, rules or categories and instead rely on learning from the training data. The second, practical challenge is that datasets of image captions are available in large quantities on the internet, but these descriptions multiplex mentions of several entities whose locations in the images are unknown.
Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )的更多相关文章
- Paper Reading - Deep Captioning with Multimodal Recurrent Neural Networks ( m-RNN ) ( ICLR 2015 ) ★
Link of the Paper: https://arxiv.org/pdf/1412.6632.pdf Main Points: The authors propose a multimodal ...
- Paper Reading - Show and Tell: A Neural Image Caption Generator ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1411.4555 Main Points: A generative model ( NIC, GoogLeNet ...
- Deep Visual-Semantic Alignments for Generating Image Descriptions(深度视觉-语义对应对于生成图像描述)
https://cs.stanford.edu/people/karpathy/deepimagesent/ Abstract We present a model that generates na ...
- Paper Reading:Deep Neural Networks for YouTube Recommendations
论文:Deep Neural Networks for YouTube Recommendations 发表时间:2016 发表作者:(Google)Paul Covington, Jay Adams ...
- Paper Reading:Deep Neural Networks for Object Detection
发表时间:2013 发表作者:(Google)Szegedy C, Toshev A, Erhan D 发表刊物/会议:Advances in Neural Information Processin ...
- 论文笔记:Visual Semantic Navigation Using Scene Priors
Visual Semantic Navigation Using Scene Priors 2018-10-21 19:39:26 Paper: https://arxiv.org/pdf/1810 ...
- Paper Reading: Stereo DSO
开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...
- 论文笔记:Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language Association
Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language ...
- 论文:利用深度强化学习模型定位新物体(VISUAL SEMANTIC NAVIGATION USING SCENE PRIORS)
这是一篇被ICLR 2019 接收的论文.论文讨论了如何利用场景先验知识 (scene priors)来定位一个新场景(novel scene)中未曾见过的物体(unseen objects).举例来 ...
随机推荐
- 硬盘分区表知识——详解硬盘MBR
这片文章说得很详细,原文:http://hi.baidu.com/waybq/blog/item/3b8db64bef3dc7f583025c66.html --------------------- ...
- mysql常见字符串处理函数
- Python入门语法
Python入门语法 动态变量 a=3 整数 a='abc' a="abc" 字符串 a=3.0 小数 a=true a=false 布尔型 a=3 ...
- 转:介绍几个著名的实用的Java反编译工具,提供下载
from :http://www.glorze.com/219.html 反编译 众所周知,我们将源代码进行编译,生成可执行的程序或者容器发布包,这个将代码转换的过程就是编译的过程,而反编译就是将这些 ...
- MySQL常用:Got a packet bigger than 'max_allowed_packet' bytes & MySQL开远程服务
1. 数据导入时出现错误 Got a packet bigger than 'max_allowed_packet' bytes 通过终端进入mysql控制台 mysql>show VARIAB ...
- py基础---多线程、多进程、协程
目录 Python基础__线程.进程.协程 1.什么是线程(thread)? 2.什么是进程(process)? 3.进程和线程的区别 4.GIL全局解释器锁 5.多线程(threading模块) 6 ...
- MongoDB DBA 实践7-----MongoDB的分片集群操
一.使用Ranged Sharding对集合进行分片 从mongo连接到的shell中mongos,使用该sh.shardCollection()方法对集合进行分片. 注意: 必须已为集合所在的数据库 ...
- redis集群步骤(windows环境)
注:原文转自 https://blog.csdn.net/zsg88/article/details/73715947 ,仅用作为方便查阅 一 所需软件:Redis.Ruby语言运行环境.Redis的 ...
- mongdb的聚合管道
我们先介绍一下 MongoDB 的聚合功能,聚合操作主要用于对数据的批量处理,往往将记录按条件分组以后,然后再进行一系列操作,例如,求最大值.最小值.平均值,求和等操作.聚合操作还能够对记录进行复杂的 ...
- 关于if与switch的使用与区别
这是if语句: if (条件表达式1){ //条件判断 //n多语句1 }else if(条件表达式2){ //n多语句2 }else if(条件表达式3){ //n多语句3 } ... ... el ...