Plus and Square Root
ZS the Coder is playing a game. There is a number displayed on the screen and there are two buttons, ' + ' (plus) and '' (square root). Initially, the number 2 is displayed on the screen. There are n + 1 levels in the game and ZS the Coder start at the level 1.
When ZS the Coder is at level k, he can :
- Press the ' + ' button. This increases the number on the screen by exactly k. So, if the number on the screen was x, it becomes x + k.
- Press the '' button. Let the number on the screen be x. After pressing this button, the number becomes . After that, ZS the Coder levels up, so his current level becomes k + 1. This button can only be pressed when x is a perfect square, i.e. x = m2 for some positive integer m.
Additionally, after each move, if ZS the Coder is at level k, and the number on the screen is m, then m must be a multiple of k. Note that this condition is only checked after performing the press. For example, if ZS the Coder is at level 4 and current number is 100, he presses the '' button and the number turns into 10. Note that at this moment, 10 is not divisible by 4, but this press is still valid, because after it, ZS the Coder is at level 5, and 10 is divisible by 5.
ZS the Coder needs your help in beating the game — he wants to reach level n + 1. In other words, he needs to press the '' button n times. Help him determine the number of times he should press the ' + ' button before pressing the '' button at each level.
Please note that ZS the Coder wants to find just any sequence of presses allowing him to reach level n + 1, but not necessarily a sequence minimizing the number of presses.
Input
The first and only line of the input contains a single integer n (1 ≤ n ≤ 100 000), denoting that ZS the Coder wants to reach level n + 1.
Output
Print n non-negative integers, one per line. i-th of them should be equal to the number of times that ZS the Coder needs to press the ' + ' button before pressing the '' button at level i.
Each number in the output should not exceed 1018. However, the number on the screen can be greater than 1018.
It is guaranteed that at least one solution exists. If there are multiple solutions, print any of them.
Example
3
14
16
46
2
999999999999999998
44500000000
4
2
17
46
97
Note
In the first sample case:
On the first level, ZS the Coder pressed the ' + ' button 14 times (and the number on screen is initially 2), so the number became 2 + 14·1 = 16. Then, ZS the Coder pressed the '' button, and the number became .
After that, on the second level, ZS pressed the ' + ' button 16 times, so the number becomes 4 + 16·2 = 36. Then, ZS pressed the '' button, levelling up and changing the number into .
After that, on the third level, ZS pressed the ' + ' button 46 times, so the number becomes 6 + 46·3 = 144. Then, ZS pressed the '' button, levelling up and changing the number into .
Note that 12 is indeed divisible by 4, so ZS the Coder can reach level 4.
Also, note that pressing the ' + ' button 10 times on the third level before levelling up does not work, because the number becomes 6 + 10·3 = 36, and when the '' button is pressed, the number becomes and ZS the Coder is at Level 4. However, 6 is not divisible by 4 now, so this is not a valid solution.
In the second sample case:
On the first level, ZS the Coder pressed the ' + ' button 999999999999999998 times (and the number on screen is initially 2), so the number became 2 + 999999999999999998·1 = 1018. Then, ZS the Coder pressed the '' button, and the number became .
After that, on the second level, ZS pressed the ' + ' button 44500000000 times, so the number becomes 109 + 44500000000·2 = 9·1010. Then, ZS pressed the '' button, levelling up and changing the number into .
Note that 300000 is a multiple of 3, so ZS the Coder can reach level 3.
有两个操作,没进行一次开平方操作,level k 提升1,输出当level提升到n+1,要进行几个+操作,每次加k,进行开平方的数t满足t%((k+1)^2)==0,而且t%k==0,所以每次的t就是
k*k*(k+1)*(k+1)恰好是平方数,开平方后是k*(k-1),上个level的就是k*(k-1),输出(k*k*(k+1)*(k+1)-k*(k-1))/k=k*(k+1)*(k+1)-k+1.
代码:
#include <iostream> using namespace std; int main()
{
int n;
cin>>n;
cout<<<<endl;
for(long long i = ;i <= n;i ++)
{
cout<<((i+)*i*(i+) - i+)<<endl;
}
}
Plus and Square Root的更多相关文章
- Codeforces 715A. Plus and Square Root[数学构造]
A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Project Euler 80:Square root digital expansion 平方根数字展开
Square root digital expansion It is well known that if the square root of a natural number is not an ...
- Codeforces 612E - Square Root of Permutation
E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...
- Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))
C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
- Square Root
Square RootWhen the square root functional configuration is selected, a simplified CORDIC algorithm ...
- Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题
A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...
- CodeChef - SQRGOOD:Simplify the Square Root (求第N个含平方因子数)
Tiny Wong the chef used to be a mathematics teacher in a senior high school. At that time, he always ...
- Project Euler 57: Square root convergents
五十七.平方根收敛(Square root convergents) 二的平方根可以表示为以下这个无穷连分数: \[ \sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac ...
随机推荐
- html结构和标签
<!DOCTYPE html><meta charset="utf-8"><header>表示页面的一个内容区块,或整个页面的标题</he ...
- 两步实现在Git Bash中用Sublime打开文件
每次都要用鼠标点来点去才能用sublime打开文件!太不科学!今天来配置一下在Git bash中用sublime打开文件 方法 新建一个文件命名为你想要的命令,比如 subl(注意不能有后缀名),内容 ...
- STM32 DMA简述
STM32 DMA简述 DMA (Direct Memory Access) 直接内存存储器,在做数据传输时能够大大减轻CPU的负担. DMA的作用 DMA提供了一个关于数据的高数传输通道,这个通道不 ...
- 【转载】解决telnet无法连接 Connection refused
原文:解决telnet无法连接 Connection refused telnet协议是TCP/IP协议族中的一员,是Internet远程登陆服务的标准协议和主要方式.它为用户提供了在本地计算机上完成 ...
- centos 升级python26到python27
由于开发库依赖于python27,而自己安装的centos6.8自带的python是2.6.6,因此打算简单的做一下升级. 因为centos的yum依赖于python26因此不打算覆盖26.步骤如下: ...
- 理解if __name__ == '__main__':
一开始没怎么注意这个语句,这两天在模拟知乎登陆时准备刨根问底了,先看两行代码片段 第一个例子:这是在login.py文件的一部分,其他我们忽略,只关注print()函数的内容 import time ...
- Bigtable阶段性总结(版本1)
Bigtable的角色:为大规模的结构化数据提供高效的存储.管理与查询. Bigtable的针对性: 大规模数据需要大规模集群支持,带来了存储.管理.查询.容错上的复杂性. 关系型数据库在数据规模较大 ...
- 1406 data too long for column 'content' at row 1
很奇怪,很邪门. content字段用的是text格式,按理说不会出现数据太长的问题. 后来搜索了一下,需要设置sql_mode.或者设为, mysql> SET @@global.sql_mo ...
- Qt5.4.1_静态编译
http://www.cnblogs.com/findumars/p/4852350.html http://godebug.org/index.php/archives/133/ http://ww ...
- vue-router详解
对于单页应用,官方提供了vue-router进行路由跳转的处理,本篇主要也是基于其官方文档写作而成. 安装 基于传统,我更喜欢采用npm包的形式进行安装. npm install vue-router ...