Plus and Square Root
ZS the Coder is playing a game. There is a number displayed on the screen and there are two buttons, ' + ' (plus) and '' (square root). Initially, the number 2 is displayed on the screen. There are n + 1 levels in the game and ZS the Coder start at the level 1.
When ZS the Coder is at level k, he can :
- Press the ' + ' button. This increases the number on the screen by exactly k. So, if the number on the screen was x, it becomes x + k.
- Press the '' button. Let the number on the screen be x. After pressing this button, the number becomes . After that, ZS the Coder levels up, so his current level becomes k + 1. This button can only be pressed when x is a perfect square, i.e. x = m2 for some positive integer m.
Additionally, after each move, if ZS the Coder is at level k, and the number on the screen is m, then m must be a multiple of k. Note that this condition is only checked after performing the press. For example, if ZS the Coder is at level 4 and current number is 100, he presses the '' button and the number turns into 10. Note that at this moment, 10 is not divisible by 4, but this press is still valid, because after it, ZS the Coder is at level 5, and 10 is divisible by 5.
ZS the Coder needs your help in beating the game — he wants to reach level n + 1. In other words, he needs to press the '' button n times. Help him determine the number of times he should press the ' + ' button before pressing the '' button at each level.
Please note that ZS the Coder wants to find just any sequence of presses allowing him to reach level n + 1, but not necessarily a sequence minimizing the number of presses.
Input
The first and only line of the input contains a single integer n (1 ≤ n ≤ 100 000), denoting that ZS the Coder wants to reach level n + 1.
Output
Print n non-negative integers, one per line. i-th of them should be equal to the number of times that ZS the Coder needs to press the ' + ' button before pressing the '' button at level i.
Each number in the output should not exceed 1018. However, the number on the screen can be greater than 1018.
It is guaranteed that at least one solution exists. If there are multiple solutions, print any of them.
Example
3
14
16
46
2
999999999999999998
44500000000
4
2
17
46
97
Note
In the first sample case:
On the first level, ZS the Coder pressed the ' + ' button 14 times (and the number on screen is initially 2), so the number became 2 + 14·1 = 16. Then, ZS the Coder pressed the '' button, and the number became .
After that, on the second level, ZS pressed the ' + ' button 16 times, so the number becomes 4 + 16·2 = 36. Then, ZS pressed the '' button, levelling up and changing the number into .
After that, on the third level, ZS pressed the ' + ' button 46 times, so the number becomes 6 + 46·3 = 144. Then, ZS pressed the '' button, levelling up and changing the number into .
Note that 12 is indeed divisible by 4, so ZS the Coder can reach level 4.
Also, note that pressing the ' + ' button 10 times on the third level before levelling up does not work, because the number becomes 6 + 10·3 = 36, and when the '' button is pressed, the number becomes and ZS the Coder is at Level 4. However, 6 is not divisible by 4 now, so this is not a valid solution.
In the second sample case:
On the first level, ZS the Coder pressed the ' + ' button 999999999999999998 times (and the number on screen is initially 2), so the number became 2 + 999999999999999998·1 = 1018. Then, ZS the Coder pressed the '' button, and the number became .
After that, on the second level, ZS pressed the ' + ' button 44500000000 times, so the number becomes 109 + 44500000000·2 = 9·1010. Then, ZS pressed the '' button, levelling up and changing the number into .
Note that 300000 is a multiple of 3, so ZS the Coder can reach level 3.
有两个操作,没进行一次开平方操作,level k 提升1,输出当level提升到n+1,要进行几个+操作,每次加k,进行开平方的数t满足t%((k+1)^2)==0,而且t%k==0,所以每次的t就是
k*k*(k+1)*(k+1)恰好是平方数,开平方后是k*(k-1),上个level的就是k*(k-1),输出(k*k*(k+1)*(k+1)-k*(k-1))/k=k*(k+1)*(k+1)-k+1.
代码:
#include <iostream> using namespace std; int main()
{
int n;
cin>>n;
cout<<<<endl;
for(long long i = ;i <= n;i ++)
{
cout<<((i+)*i*(i+) - i+)<<endl;
}
}
Plus and Square Root的更多相关文章
- Codeforces 715A. Plus and Square Root[数学构造]
A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Project Euler 80:Square root digital expansion 平方根数字展开
Square root digital expansion It is well known that if the square root of a natural number is not an ...
- Codeforces 612E - Square Root of Permutation
E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...
- Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))
C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
- Square Root
Square RootWhen the square root functional configuration is selected, a simplified CORDIC algorithm ...
- Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题
A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...
- CodeChef - SQRGOOD:Simplify the Square Root (求第N个含平方因子数)
Tiny Wong the chef used to be a mathematics teacher in a senior high school. At that time, he always ...
- Project Euler 57: Square root convergents
五十七.平方根收敛(Square root convergents) 二的平方根可以表示为以下这个无穷连分数: \[ \sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac ...
随机推荐
- Ubuntu vim java 自动补全javacomeplete2
一 安装vundle $ git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/Vundle.vim 默认安装在/.v ...
- VS2010/MFC编程入门之二十(常用控件:静态文本框)
上一节鸡啄米讲了颜色对话框之后,关于对话框的使用和各种通用对话框的介绍就到此为止了.从本节开始鸡啄米将讲解各种常用控件的用法.常用控件主要包括:静态文本框.编辑框.单选按钮.复选框.分组框.列表框.组 ...
- Redis快速入门之简介
一.Redis是什么? Redis 是一个开源(BSD许可)基于内存数据结构存储系统,它可以用作数据库.缓存和消息中间件. 它支持多种类型的数据结构,如字符串(strings), 散列(hashes) ...
- ng-深度学习-课程笔记-10: 机器学习策略2(Week2)
1 误差分析( Carrying out error analysis ) 假设你训练了一个猫的二分类模型,在开发集上的错误率是10%,你想分析这10%的错误率来自哪里,怎么做呢? 先把这些错分的图片 ...
- mongodb的分片(2)
在上一片博客,详细说明了mongodb的分片搭建的详细过程:分片搭建 在这里会说一些分片的维护与操作! 在集群搭建完,我们使用了sh.status()查看分片之后的数据,如下: #连接的是mongos ...
- Java生成PDF之iTextPDF的使用
今天做财务方面相关数据的导出功能,需要导出PDF和Excel,在项目经理那里得知有一个叫iTextPDF的java框架导出PDF文件很好用,于是拿来玩儿玩儿. package com.smart.pr ...
- maven nexus私服搭建
1. 下载 wget http://download.sonatype.com/nexus/oss/nexus-2.12.0-01-bundle.tar.gz 2. 解压 tar zxvf nexus ...
- 20145301《网络对抗》Exp2 后门原理与实践
20145301<网络对抗>Exp2 后门原理与实践 基础问题回答 例举你能想到的一个后门进入到你系统中的可能方式? 系统或者某些软件自身留下的后门. 钓鱼网站等非正规网站上捆绑下载 例举 ...
- 20189215《Linux内核原理与分析》第一周作业
实验1 Linux系统简介 本节主要学习了 Linux 的历史,Linux 与 Windows 的区别等入门知识.通过学习,我明确了目的,是要用 Linux 来做程序开发.搭建服务器等:并且非常接受不 ...
- Asynchronous Programming Using Delegates使用委托进行异步编程
http://msdn.microsoft.com/zh-cn/library/22t547yb(v=vs.110).aspx https://github.com/chucklu/Test/tree ...