Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."

"No problem."

—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

题目来源

ACM-ICPC 2018 南京赛区网络预赛

因为n小于20 所以可以往状压上去想

每个题做与不做就是一种状态

枚举每种状态i 再枚举这个状态下最后做的题目j

通过状态转移方程 dp[i] = max(dp[i], dp[i ^ (1 << (j - 1))] + t * a[j] + b[j]

其中t是i中1的个数,也就是第j题如果最后做对应的时间

对于每一种状态i 要判断他这种状态所表示的所有做的题目成立不成立 也就是他这种状态是否成立

也就是说他所有是1的题目 都要判断是否满足他的要求

要求也可以转换为状态来存

另外: maxn = 25 会MLE, maxn = 21就过了

过程中忘记对i这个状态是否成立进行判断了


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; const int maxn = 21; struct pro{
int a, b, s;
int must;
}problems[maxn];
int dp[1 << maxn], n; void init()
{
for(int i = 0; i < maxn;i++){
problems[i].must = 0;
}
memset(dp, 0, sizeof(dp));
} int main()
{
while(scanf("%d", &n) != EOF){
init();
for(int i = 1; i <= n; i++){
scanf("%d%d%d", &problems[i].a, &problems[i].b, &problems[i].s);
for(int j = 0; j < problems[i].s; j++){
int p;
scanf("%d", &p);
problems[i].must |= (1 << (p - 1));
}
} int ans = 0;
for(int i = 0; i < (1 << n); i++){
bool flag = true;
for(int j = 1; j <= n; j++){
if((i & (1 << (j - 1))) == 0){
continue;
}
if((i & problems[j].must) != problems[j].must){
flag = false;
break;
}
}
if(!flag) continue;
for(int j = 1; j <= n; j++){
if((i & (1 << (j - 1))) == 0){
continue;
}
int t = 0, tmp = i;
while(tmp){
if(tmp & 1)
t++;
tmp >>= 1;
}
dp[i] = max(dp[i], dp[i ^ (1 << (j - 1))] + t * problems[j].a + problems[j].b);
//ans = max(ans, dp[i]);
}
} printf("%d\n", dp[(1<<n) - 1]);
}
return 0;
}

南京网络赛E-AC Challenge【状压dp】的更多相关文章

  1. 2018icpc南京网络赛-E AC Challenge(状压+dfs)

    题意: n道题,每道题有ai和bi,完成这道题需要先完成若干道题,完成这道题可以得到分数t*ai+bi,其中t是时间 1s, n<=20 思路: 由n的范围状压,状态最多1e6 然后dfs,注意 ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP

    题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest with n (0 < n \le 20)n(0& ...

  3. 计蒜客 30994 - AC Challenge - [状压DP][2018ICPC南京网络预赛E题]

    题目链接:https://nanti.jisuanke.com/t/30994 样例输入: 5 5 6 0 4 5 1 1 3 4 1 2 2 3 1 3 1 2 1 4 样例输出: 55 样例输入: ...

  4. hdu 3247 AC自动+状压dp+bfs处理

    Resource Archiver Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Ot ...

  5. hdu 2825 aC自动机+状压dp

    Wireless Password Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. BZOJ1559 [JSOI2009]密码 【AC自动机 + 状压dp】

    题目链接 BZOJ1559 题解 考虑到这是一个包含子串的问题,而且子串非常少,我们考虑\(AC\)自动机上的状压\(dp\) 设\(f[i][j][s]\)表示长度为\(i\)的串,匹配到了\(AC ...

  7. zoj3545Rescue the Rabbit (AC自动机+状压dp+滚动数组)

    Time Limit: 10 Seconds      Memory Limit: 65536 KB Dr. X is a biologist, who likes rabbits very much ...

  8. hdu2825 Wireless Password(AC自动机+状压dp)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission ...

  9. HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解

    题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...

  10. 2019年第十届蓝桥杯省赛-糖果(一维状压dp)

    看到20的数据量很容易想到状压dp. 开1<<20大小的数组来记录状态,枚举n个糖包,将其放入不同状态中(类似01背包思想) 时间复杂度O(n*(2^20)). import java.u ...

随机推荐

  1. vector push_back报错

    场景:定义了一个结构体,包含一个vector的成员变量,在给这个vTQ push_back数据的时候报错. typedef struct tag_TQInfo { int iTime; int iMa ...

  2. (转)基于live555的流媒体代理转发服务器

    对于并发量并不大而且对性能要求不是很高的流媒体传输模块,live555还是很好的选择,下面说一下我所实现的流媒体代理服务器(目前只能实现对H264单视频的转发)代理转发主要 对于并发量并不大而且对性能 ...

  3. Shader开发之三大着色器

    固定功能管线着色器Fixed Function Shaders 固定功能管线着色器的关键代码一般都在Pass的材质设置Material{}和纹理设置SetTexture{}部分. Shader &qu ...

  4. 对phpexcel的若干补充

    导出excel属性设置 //Include class require_once('Classes/PHPExcel.php'); require_once('Classes/PHPExcel/Wri ...

  5. c++ 转化

    atof(将字符串转换成浮点型数)相关函数atoi,atol,strtod,strtol,strtoul表头文件#include定义函数double atof(const char *nptr);函数 ...

  6. C语言中,为什么字符串可以赋值给字符指针变量

    转载于:http://www.cnblogs.com/KingOfFreedom/archive/2012/12/07/2807223.html 本文是通过几篇转帖的文章整理而成的,内容稍有修改: 一 ...

  7. NHibernate初学五之关联一对多关系

    1:创建两张表T_Country.T_Person:其中T_Person表中有一个CountryID对应T_Country的ID,一个Country可以对应多个Person CREATE TABLE ...

  8. java socket通信-传输文件图片--传输图片

    ClientTcpSend.java   client发送类 package com.yjf.test; import java.io.DataOutputStream; import java.io ...

  9. php 关于日期的知识总结

    1.UNIX时间戳   time() echo time(); 2.UNIX时间戳转换为日期用函数: date() 一般形式:date(); 即 echo date(date('Y-m-d H:i:s ...

  10. 【微信开发】PC端 微信扫码支付成功之后自动跳转

    场景: PC端   微信扫码支付 结果: 支付成功 自动跳转 实现思路: 支付二维码页面,写ajax请求支付状态,请求到结果,无论成功还是失败,都跳转到相应的结果页面 具体实现方法: html部分: ...