Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."

"No problem."

—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

题目来源

ACM-ICPC 2018 南京赛区网络预赛

因为n小于20 所以可以往状压上去想

每个题做与不做就是一种状态

枚举每种状态i 再枚举这个状态下最后做的题目j

通过状态转移方程 dp[i] = max(dp[i], dp[i ^ (1 << (j - 1))] + t * a[j] + b[j]

其中t是i中1的个数,也就是第j题如果最后做对应的时间

对于每一种状态i 要判断他这种状态所表示的所有做的题目成立不成立 也就是他这种状态是否成立

也就是说他所有是1的题目 都要判断是否满足他的要求

要求也可以转换为状态来存

另外: maxn = 25 会MLE, maxn = 21就过了

过程中忘记对i这个状态是否成立进行判断了


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; const int maxn = 21; struct pro{
int a, b, s;
int must;
}problems[maxn];
int dp[1 << maxn], n; void init()
{
for(int i = 0; i < maxn;i++){
problems[i].must = 0;
}
memset(dp, 0, sizeof(dp));
} int main()
{
while(scanf("%d", &n) != EOF){
init();
for(int i = 1; i <= n; i++){
scanf("%d%d%d", &problems[i].a, &problems[i].b, &problems[i].s);
for(int j = 0; j < problems[i].s; j++){
int p;
scanf("%d", &p);
problems[i].must |= (1 << (p - 1));
}
} int ans = 0;
for(int i = 0; i < (1 << n); i++){
bool flag = true;
for(int j = 1; j <= n; j++){
if((i & (1 << (j - 1))) == 0){
continue;
}
if((i & problems[j].must) != problems[j].must){
flag = false;
break;
}
}
if(!flag) continue;
for(int j = 1; j <= n; j++){
if((i & (1 << (j - 1))) == 0){
continue;
}
int t = 0, tmp = i;
while(tmp){
if(tmp & 1)
t++;
tmp >>= 1;
}
dp[i] = max(dp[i], dp[i ^ (1 << (j - 1))] + t * problems[j].a + problems[j].b);
//ans = max(ans, dp[i]);
}
} printf("%d\n", dp[(1<<n) - 1]);
}
return 0;
}

南京网络赛E-AC Challenge【状压dp】的更多相关文章

  1. 2018icpc南京网络赛-E AC Challenge(状压+dfs)

    题意: n道题,每道题有ai和bi,完成这道题需要先完成若干道题,完成这道题可以得到分数t*ai+bi,其中t是时间 1s, n<=20 思路: 由n的范围状压,状态最多1e6 然后dfs,注意 ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP

    题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest with n (0 < n \le 20)n(0& ...

  3. 计蒜客 30994 - AC Challenge - [状压DP][2018ICPC南京网络预赛E题]

    题目链接:https://nanti.jisuanke.com/t/30994 样例输入: 5 5 6 0 4 5 1 1 3 4 1 2 2 3 1 3 1 2 1 4 样例输出: 55 样例输入: ...

  4. hdu 3247 AC自动+状压dp+bfs处理

    Resource Archiver Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Ot ...

  5. hdu 2825 aC自动机+状压dp

    Wireless Password Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. BZOJ1559 [JSOI2009]密码 【AC自动机 + 状压dp】

    题目链接 BZOJ1559 题解 考虑到这是一个包含子串的问题,而且子串非常少,我们考虑\(AC\)自动机上的状压\(dp\) 设\(f[i][j][s]\)表示长度为\(i\)的串,匹配到了\(AC ...

  7. zoj3545Rescue the Rabbit (AC自动机+状压dp+滚动数组)

    Time Limit: 10 Seconds      Memory Limit: 65536 KB Dr. X is a biologist, who likes rabbits very much ...

  8. hdu2825 Wireless Password(AC自动机+状压dp)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission ...

  9. HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解

    题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...

  10. 2019年第十届蓝桥杯省赛-糖果(一维状压dp)

    看到20的数据量很容易想到状压dp. 开1<<20大小的数组来记录状态,枚举n个糖包,将其放入不同状态中(类似01背包思想) 时间复杂度O(n*(2^20)). import java.u ...

随机推荐

  1. 【转】Linux内核源码分析方法

    一.内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次.如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径.我们都 ...

  2. layer弹出层效果

    layer是一款近年来备受青睐的web弹层组件,她具备全方位的解决方案,致力于服务各水平段的开发人员,您的页面会轻松地拥有丰富友好的操作体验. http://layer.layui.com/ 演示:h ...

  3. iOS: UUID and SSKeyChain

    需要加入SSKeyChain文件 传送门:SSKeyChain // // UniqueIDCreater.h // Housemart // // Created by Haozhen Li on ...

  4. UIScrollView 的代理方法简单注解

    //减速停止了时执行,手触摸时执行执行 - (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView;    //只要滚动了就会触发 ...

  5. jQuery on()方法绑定动态元素的点击事件无响应的解决办法

    $('#check_all').on('click' , function(){ alert(1); }); $("#yujinlist").append(html); count ...

  6. Buff系统的实现

    BUFF是很多游戏都在采用的一种临时增益机制.本文讲述如何在基于关系型数据库的网页游戏中实现这一系统:如何扩展该系统:以及如何提高该系统的性能. 引言 BUFF是很多游戏都在采用的一种临时增益机制:与 ...

  7. [转] Windows局域网通过NTP设置时间同步

    NTP(Network Time Protocol,网络时间协议)是用来使网络中的各个计算机时间同步的一种协议. 如果局域网计算机(Windows系统)可以连接Internet,可以通过“控制面板”— ...

  8. Socket无连接简单实例

    使用无连接的套接字,我们能够在自我包含的数据包里发送消息,采用独立的读函数读取消息,读取的消息是使用独立的发送函数发送的.但是UDP数据包不能保证可靠传输,存在许多的因素,比如网络繁忙等等,都有可能阻 ...

  9. Android中使用UncaughtExceptionHandler来处理未捕获的异常

    原文在sparkyuan.me上.转载注明出处:http://sparkyuan.github.io/2016/03/28/使用UncaughtExceptionHandler来处理未捕获的异常/ 全 ...

  10. Git 的BUG小结

    Git 的BUG小结 Git 在push的时候出现了: fatal: The remote end hung up unexpectedly 在网上找了非常多  发现出现了下面错误提示也可能是同样的问 ...