Problem Description

The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those
digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.
For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12.
Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit
and also the digital root of 39.
 
Input
The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.
 
Output
For each integer in the input, output its digital root on a separate line of the output.
 
Sample Input
24
39
0
 
Sample Output
6
3
--------------------------------------------------------------------------------------------------------
一个数和它各位数的和同模。
证明:

首先n=d1+10d2+…+10m-1dm。则n= 9d2+…+(10m-1-1)dm+ d1+d2+…+dm,把所有的位数相加结果就是9的倍数取余,余数为n’=d1+d2+…+dm,所以n与n’同模。最终,经过不断取余,n会化为个位数。

${\rm{x}} = \sum\limits_{i = 1}^n {{d_i}{{10}^i}} $

${10^i} \equiv {1^i} \equiv 1$

$x = \sum\limits_{i = 1}^n {{d_i}(\bmod 9)} $

设${\rm{x}} = \sum\limits_{i = 1}^n {{d_i}} $

f(x)=x(mod 9)

f(f(x)) = f(x) = x(mod 9)

完整的公式为

${\rm{digit\_root(n) = }}\left\{ \begin{array}{l}
0,if(n = 0)\\
9,if(n \ne 0,n \equiv 0\bmod 9)\\
n\bmod 9,if(n \ne 0\bmod 9)
\end{array} \right.$

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#define SIZE 100000
char n[SIZE];
int main()
{
int ans, length;
while (scanf("%s", n)== 1 && n[0] != '0')
{
ans = 0;
length = strlen(n);
for (int i = 0; i < length; i++)
{
ans += n[i] - '0';
} printf("%d\n", ans%9==0?9:ans%9);
}
return 0;
}

  

ACM1013:Digital Roots的更多相关文章

  1. 【九度OJ】题目1124:Digital Roots 解题报告

    [九度OJ]题目1124:Digital Roots 解题报告 标签(空格分隔): 九度OJ 原题地址:http://ac.jobdu.com/problem.php?pid=1124 题目描述: T ...

  2. POJ 1519:Digital Roots

    Digital Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25766   Accepted: 8621 De ...

  3. 九度OJ 1124:Digital Roots(数根) (递归)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2963 解决:1066 题目描述: The digital root of a positive integer is found by s ...

  4. 1013:Digital Roots

    注意:大数要用字符串表示! sprintf:字符串格式化命令 主要功能:将格式化的数据写入某个字符串缓冲区 头文件:<stdio.h> 原型 int sprintf( char *buff ...

  5. HDU - 1310 - Digital Roots

    先上题目: Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

  6. Digital Roots 分类: HDU 2015-06-19 22:56 13人阅读 评论(0) 收藏

    Digital Roots Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...

  7. Digital Roots:高精度

    C - Digital Roots Description The digital root of a positive integer is found by summing the digits ...

  8. 解题报告:hdu1013 Digital Roots

    2017-09-07 22:02:01 writer:pprp 简单的水题,但是需要对最初的部分进行处理,防止溢出 /* @theme: hdu 1013 Digital roots @writer: ...

  9. Eddy's digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...

随机推荐

  1. 用适配器模式处理复杂的UITableView中cell的业务逻辑

    用适配器模式处理复杂的UITableView中cell的业务逻辑 适配器是用来隔离数据源对cell布局影响而使用的,cell只接受适配器的数据,而不会与外部数据源进行交互. 源码: ModelCell ...

  2. December 31st 2016 Week 53rd Saturday

    In every triumph, there's a lot of try. 每个胜利背后都有许多尝试. This Year is over, and let it be. It would be ...

  3. Entity Framework:代码优先

    一.代码优先Code First EF6支持Oracle ODT 12C Release 3 (net4.5) DataModel(类)-->生成数据库DB 或 存在的数据库DB-->生成 ...

  4. c++我在努力----第三次作业体会

    [github地址](https://github.com/kobe96/object-oriented) 这次作业的三大难点 1.类的应用 从我们并没有接触过c++,到掌握如何写一个程序,多个类的引 ...

  5. Chapter 2 Secondary Sorting:Detailed Example

    2.1 Introduction MapReduce framework sorts input to reducers by key, but values of reducers are arbi ...

  6. 015.2Condiction接口

    Condiction对象能够让线程等待,也能够唤醒相应的线程,通过下面方法,具体看代码:await();signal();signalAll(); 使用步骤:1)创建锁2)通过锁拿到Condictio ...

  7. windows下注册和取消pg服务的命令

    pg_ctl register [-N servicename] [-U username] [-P password] [-D datadir] [-w][-t seconds] [-o optio ...

  8. 在CentOS7上安装和使用ZooKeeper最新版本(V3.4.12)

    0.ZooKeeper文档 http://zookeeper.apache.org/doc/r3.4.11/zookeeperOver.html 1.准备 在CentOS7上安装zookeeper时, ...

  9. angularJs的工具方法2

    一.angular.isArray     判断是否是数组 var a = []; console.log(angular.isArray(a)); //判断参数里面的是否是数组 二.angular. ...

  10. z-index终结者

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/wangshuxuncom/article/details/30280627         z-in ...