高性能队列Disruptor的使用
一、什么是 Disruptor
从功能上来看,Disruptor 是实现了“队列”的功能,而且是一个有界队列。那么它的应用场景自然就是“生产者-消费者”模型的应用场合了。
可以拿 JDK 的 BlockingQueue 做一个简单对比,以便更好地认识 Disruptor 是什么。
我们知道 BlockingQueue 是一个 FIFO 队列,生产者(Producer)往队列里发布(publish)一项事件(或称之为“消息”也可以)时,消费者(Consumer)能获得通知;如果没有事件时,消费者被堵塞,直到生产者发布了新的事件。
这些都是 Disruptor 能做到的,与之不同的是,Disruptor 能做更多:
- 同一个“事件”可以有多个消费者,消费者之间既可以并行处理,也可以相互依赖形成处理的先后次序(形成一个依赖图);
- 预分配用于存储事件内容的内存空间;
- 针对极高的性能目标而实现的极度优化和无锁的设计;
以上的描述虽然简单地指出了 Disruptor 是什么,但对于它“能做什么”还不是那么直截了当。一般性地来说,当你需要在两个独立的处理过程(两个线程)之间交换数据时,就可以使用 Disruptor 。当然使用队列(如上面提到的 BlockingQueue)也可以,只不过 Disruptor 做得更好。
拿队列来作比较的做法弱化了对 Disruptor 有多强大的认识,如果想要对此有更多的了解,可以仔细看看 Disruptor 在其东家 LMAX 交易平台(也是实现者) 是如何作为核心架构来使用的,这方面就不做详述了,问度娘或谷哥都能找到。
二、Disruptor 的核心概念
先从了解 Disruptor 的核心概念开始,来了解它是如何运作的。下面介绍的概念模型,既是领域对象,也是映射到代码实现上的核心对象。
- Ring Buffer
如其名,环形的缓冲区。曾经 RingBuffer 是 Disruptor 中的最主要的对象,但从3.0版本开始,其职责被简化为仅仅负责对通过 Disruptor 进行交换的数据(事件)进行存储和更新。在一些更高级的应用场景中,Ring Buffer 可以由用户的自定义实现来完全替代。
- Sequence Disruptor
通过顺序递增的序号来编号管理通过其进行交换的数据(事件),对数据(事件)的处理过程总是沿着序号逐个递增处理。一个 Sequence 用于跟踪标识某个特定的事件处理者( RingBuffer/Consumer )的处理进度。虽然一个 AtomicLong 也可以用于标识进度,但定义 Sequence 来负责该问题还有另一个目的,那就是防止不同的 Sequence 之间的CPU缓存伪共享(Flase Sharing)问题。
(注:这是 Disruptor 实现高性能的关键点之一,网上关于伪共享问题的介绍已经汗牛充栋,在此不再赘述)。
- Sequencer
Sequencer 是 Disruptor 的真正核心。此接口有两个实现类 SingleProducerSequencer、MultiProducerSequencer ,它们定义在生产者和消费者之间快速、正确地传递数据的并发算法。
- Sequence Barrier
用于保持对RingBuffer的 main published Sequence 和Consumer依赖的其它Consumer的 Sequence 的引用。 Sequence Barrier 还定义了决定 Consumer 是否还有可处理的事件的逻辑。
- Wait Strategy
定义 Consumer 如何进行等待下一个事件的策略。 (注:Disruptor 定义了多种不同的策略,针对不同的场景,提供了不一样的性能表现)
- Event
在 Disruptor 的语义中,生产者和消费者之间进行交换的数据被称为事件(Event)。它不是一个被 Disruptor 定义的特定类型,而是由 Disruptor 的使用者定义并指定。
- EventProcessor
EventProcessor 持有特定消费者(Consumer)的 Sequence,并提供用于调用事件处理实现的事件循环(Event Loop)。
- EventHandler
Disruptor 定义的事件处理接口,由用户实现,用于处理事件,是 Consumer 的真正实现。
- Producer
即生产者,只是泛指调用 Disruptor 发布事件的用户代码,Disruptor 没有定义特定接口或类型。
三、如何使用 Disruptor
Disruptor 的 API 十分简单,主要有以下几个步骤:
1.定义事件
事件(Event)就是通过 Disruptor 进行交换的数据类型。
public class LongEvent
{
private long value;
public void set(long value)
{
this.value = value;
}
}
2.定义事件工厂
事件工厂(Event Factory)定义了如何实例化前面第1步中定义的事件(Event),需要实现接口 com.lmax.disruptor.EventFactory。
Disruptor 通过 EventFactory 在 RingBuffer 中预创建 Event 的实例。
一个 Event 实例实际上被用作一个“数据槽”,发布者发布前,先从 RingBuffer 获得一个 Event 的实例,然后往 Event 实例中填充数据,之后再发布到 RingBuffer 中,之后由 Consumer 获得该 Event 实例并从中读取数据。
import com.lmax.disruptor.EventFactory;
public class LongEventFactory implements EventFactory<LongEvent>
{
public LongEvent newInstance()
{
return new LongEvent();
}
}
3.定义事件处理的具体实现
通过实现接口 com.lmax.disruptor.EventHandler 定义事件处理的具体实现。
import com.lmax.disruptor.EventHandler;
public class LongEventHandler implements EventHandler<LongEvent>
{
public void onEvent(LongEvent event, long sequence, boolean endOfBatch)
{
System.out.println("Event: " + event);
}
}
4.定义用于事件处理的线程池
Disruptor 通过 java.util.concurrent.ExecutorService 提供的线程来触发 Consumer 的事件处理。例如:
ExecutorService executor = Executors.newCachedThreadPool();
5.指定等待策略
Disruptor 定义了 com.lmax.disruptor.WaitStrategy 接口用于抽象 Consumer 如何等待新事件,这是策略模式的应用。
Disruptor 提供了多个 WaitStrategy 的实现,每种策略都具有不同性能和优缺点,根据实际运行环境的 CPU 的硬件特点选择恰当的策略,并配合特定的 JVM 的配置参数,能够实现不同的性能提升。
例如,BlockingWaitStrategy、SleepingWaitStrategy、YieldingWaitStrategy 等,其中,
- BlockingWaitStrategy 是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现;
- SleepingWaitStrategy 的性能表现跟 BlockingWaitStrategy 差不多,对 CPU 的消耗也类似,但其对生产者线程的影响最小,适合用于异步日志类似的场景;
- YieldingWaitStrategy 的性能是最好的,适合用于低延迟的系统。在要求极高性能且事件处理线数小于 CPU 逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性。
WaitStrategy BLOCKING_WAIT = new BlockingWaitStrategy();
WaitStrategy SLEEPING_WAIT = new SleepingWaitStrategy();
WaitStrategy YIELDING_WAIT = new YieldingWaitStrategy();
6.启动 Disruptor
EventFactory<LongEvent> eventFactory = new LongEventFactory();
ExecutorService executor = Executors.newSingleThreadExecutor();
int ringBufferSize = 1024 * 1024; // RingBuffer 大小,必须是 2 的 N 次方;
Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(eventFactory,
ringBufferSize, executor, ProducerType.SINGLE,
new YieldingWaitStrategy());
EventHandler<LongEvent> eventHandler = new LongEventHandler();
disruptor.handleEventsWith(eventHandler);
disruptor.start();
7.发布事件
Disruptor 的事件发布过程是一个两阶段提交的过程:
- 第一步:先从 RingBuffer 获取下一个可以写入的事件的序号;
- 第二步:获取对应的事件对象,将数据写入事件对象;
- 第三步:将事件提交到 RingBuffer;
事件只有在提交之后才会通知 EventProcessor 进行处理;
// 发布事件;
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
long sequence = ringBuffer.next();//请求下一个事件序号;
try {
LongEvent event = ringBuffer.get(sequence);//获取该序号对应的事件对象;
long data = getEventData();//获取要通过事件传递的业务数据;
event.set(data);
} finally{
ringBuffer.publish(sequence);//发布事件;
}
注意,最后的 ringBuffer.publish 方法必须包含在 finally 中以确保必须得到调用;如果某个请求的 sequence 未被提交,将会堵塞后续的发布操作或者其它的 producer。
Disruptor 还提供另外一种形式的调用来简化以上操作,并确保 publish 总是得到调用。
static class Translator implements EventTranslatorOneArg<LongEvent, Long>{
@Override
public void translateTo(LongEvent event, long sequence, Long data) {
event.set(data);
}
}
public static Translator TRANSLATOR = new Translator();
public static void publishEvent2(Disruptor<LongEvent> disruptor) {
// 发布事件;
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
long data = getEventData();//获取要通过事件传递的业务数据;
ringBuffer.publishEvent(TRANSLATOR, data);
}
此外,Disruptor 要求 RingBuffer.publish 必须得到调用的潜台词就是,如果发生异常也一样要调用 publish ,那么,很显然这个时候需要调用者在事件处理的实现上来判断事件携带的数据是否是正确的或者完整的,这是实现者应该要注意的事情。
8.关闭 Disruptor
disruptor.shutdown();//关闭 disruptor,方法会堵塞,直至所有的事件都得到处理;
executor.shutdown();//关闭 disruptor 使用的线程池;如果需要的话,必须手动关闭, disruptor 在 shutdown 时不会自动关闭;
高性能队列Disruptor的使用的更多相关文章
- 高性能队列Disruptor系列1--传统队列的不足
在前一篇文章Java中的阻塞队列(BlockingQueue)中介绍了Java中的阻塞队列.从性能上我们能得出一个结论:数组优于链表,CAS优于锁.那么有没有一种队列,通过数组的方式实现,而且采用无锁 ...
- 高性能队列——Disruptor
背景 Disruptor是英国外汇交易公司LMAX开发的一个高性能队列,研发的初衷是解决内存队列的延迟问题(在性能测试中发现竟然与I/O操作处于同样的数量级).基于Disruptor开发的系统单线程能 ...
- 高性能队列disruptor为什么这么快?
背景 Disruptor是LMAX开发的一个高性能队列,研发的初衷是解决内存队列的延迟问题(在性能测试中发现竟然与I/O操作处于同样的数量级).基于Disruptor开发的系统单线程能支撑每秒600万 ...
- 高性能队列Disruptor系列2--浅析Disruptor
1. Disruptor简单介绍 Disruptor是一个由LMAX开源的Java并发框架.LMAX是一种新型零售金融交易平台,这个系统是建立在 JVM 平台上,核心是一个业务逻辑处理器,它能够在一个 ...
- 高性能队列Disruptor系列3--Disruptor的简单使用(译)
简单用法 下面以一个简单的例子来看看Disruptor的用法:生产者发送一个long型的消息,消费者接收消息并打印出来. 首先,我们定义一个Event: public class LongEvent ...
- 高性能无锁队列 Disruptor 初体验
原文地址: haifeiWu和他朋友们的博客 博客地址:www.hchstudio.cn 欢迎转载,转载请注明作者及出处,谢谢! 最近一直在研究队列的一些问题,今天楼主要分享一个高性能的队列 Disr ...
- 从构建分布式秒杀系统聊聊Disruptor高性能队列
前言 秒杀架构持续优化中,基于自身认知不足之处在所难免,也请大家指正,共同进步.文章标题来自码友 简介 LMAX Disruptor是一个高性能的线程间消息库.它源于LMAX对并发性,性能和非阻塞算法 ...
- JUC并发编程与高性能内存队列disruptor实战-下
并发理论 JMM 概述 Java Memory Model缩写为JMM,直译为Java内存模型,定义了一套在多线程读写共享数据时(成员变量.数组)时,对数据的可见性.有序性和原子性的规则和保障:JMM ...
- JUC并发编程与高性能内存队列disruptor实战-上
JUC并发实战 Synchonized与Lock 区别 Synchronized是Java的关键字,由JVM层面实现的,Lock是一个接口,有实现类,由JDK实现. Synchronized无法获取锁 ...
随机推荐
- 怎样将word中的图片插入到CSDN博客中
目前大部分的博客作者在用Word写博客这件事情上都会遇到以下3个痛点: 1.所有博客平台关闭了文档发布接口,用户无法使用Word,Windows Live Writer等工具来发布博客.使用Word写 ...
- ZOJ1648 Circuit Board 2017-04-18 20:31 34人阅读 评论(0) 收藏
Circuit Board Time Limit: 2 Seconds Memory Limit: 65536 KB On the circuit board, there are lots ...
- PYTHON 和R的对比
为了鼓励新工具的出现,机器学习和数据分析领域似乎已经成了“开源”的天下.Python 和 R 语言都具有健全的生态系统,其中包括了很多开源工具和资源库,从而能够帮助任何水平层级的数据科学家展示其分析工 ...
- plsql导入导出表数据
导出表结构: Tools(工具)-->Export User Objects(导出用户对象) -->选择要导出的表(包括Sequence等)-->.sql文件,导出的都为sql文件 ...
- cxrichedit导入WORD
cxrichedit导入WORD word := CreateOLEObject('Word.Application'); word.Documents.Open(l_path,false); w ...
- java程序练习
数组求和作业 开发环境:java 工具:eclipse 两种数据类型excel和csv 在同学建议下,我选择用csv文件打开,这就引来了第一个问题,在java中如何调用csv文件.以下是我百度的结果 ...
- Spring学习(五)——集成MyBatis
本篇我们将在上一篇http://www.cnblogs.com/wenjingu/p/3829209.html的Demo程序的基础上将 MyBatis 代码无缝地整合到 Spring 中. 数据库仍然 ...
- zookeeper的主要应用
master选举 数据发布和订阅 负载均衡
- spring boot maven多模块打包部署到tomcat
@SpringBootApplication(scanBasePackages = {"com.xxx.*"}) public class ApiApplication exten ...
- SQL Server 数据库的分类和用户数据库文件组成
数据库的分类 数据库分为两大类,一类是系统数据库:另一类是用户数据库,系统数据库我们一般使用的时候较少, 下面我们看看系统数据库包含哪些并分别有什么作用,如下图所示 用户数据库文件组成 ...