Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)
题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径。
先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上有一个点的度数是n-1,那么必然需要走一条生成树上的边,此时答案为x+y*(n-2).
否则可以不走生成树上的边,则答案为y*(n-1).
再考虑x<y的情况,那么应该尽量走生成树上的边,由于树上没有环,于是我们每一次需要走树的一条路,然后需要从非生成树上的边跳到树的另一个点上去,
显然跳的越少越好,于是我们只需要找到树的最小路径覆盖,跳路径覆盖数-1次就可以了。
对于有向图的最小路径覆盖,一般是使用二分图匹配或者最大流来解决的。
而对于树的最小路径覆盖,可以用树形DP来解决。
令dp[x][0]表示x不与x的父亲构成路径的最小路径覆盖数,dp[x][1]表示x与x的父亲构成路径的最小路径覆盖数。
那么则有:
x没有儿子,dp[x][0]=dp[x][1]=1.
x只有一个儿子,dp[x][0]=dp[x][1]=dp[son[x]][1];
x有两个或者更多儿子,dp[x][0]=min(dp[son[x][i]][1]+dp[son[x][j]][1]+dp[son[x]][0])-1. dp[x][1]=min(dp[son[x][i]][1]+dp[son[x]][0]);
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... struct Edge{int p, next;}edge[N<<];
int head[N], cnt=;
int dee[N], sum, dp[N][]; void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;}
void dfs(int x, int fa){
int siz=, sum=, f=-INF, s=-INF;
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
dfs(v,x); ++siz; sum+=dp[v][];
if (dp[v][]-dp[v][]>f) s=f, f=dp[v][]-dp[v][];
else if (dp[v][]-dp[v][]>s) s=dp[v][]-dp[v][];
}
if (siz==) dp[x][]=dp[x][]=;
else {
if (siz==) dp[x][]=sum-f, dp[x][]=sum-f;
else dp[x][]=sum-f-s-, dp[x][]=sum-f;
}
}
int main ()
{
int n, x, y, u, v;
scanf("%d%d%d",&n,&x,&y);
FO(i,,n) scanf("%d%d",&u,&v), add_edge(u,v), add_edge(v,u), ++dee[u], ++dee[v];
if (x>=y) {
bool flag=false;
FOR(i,,n) if (dee[i]==n-) flag=true;
if (flag) printf("%lld\n",(LL)(n-)*y+x);
else printf("%lld\n",(LL)(n-)*y);
}
else {
dfs(,);
printf("%lld\n",(LL)(dp[][]-)*y+(LL)(n-dp[][])*x);
}
return ;
}
Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)的更多相关文章
- CodeForces 618D Hamiltonian Spanning Tree
题意:要把所有的节点都访问一次,并且不能重复访问,有两种方式访问,一种是根据树上的路径 走和当前节点连接的下一个节点cost x, 或者可以不走树上边,直接跳到不与当前节点连接的节点,cost y 分 ...
- SPOJ UOFTCG - Office Mates (树的最小路径覆盖)
UOFTCG - Office Mates no tags Dr. Baws has an interesting problem. His N graduate students, while f ...
- SPOJ - UOFTCG 树的最小路径覆盖
//SPOJ - UOFTCG 树的最小路径覆盖 #include <bits/stdc++.h> #include <vector> using namespace std; ...
- HDU 3861 The King’s Problem(tarjan连通图与二分图最小路径覆盖)
题意:给我们一个图,问我们最少能把这个图分成几部分,使得每部分内的任意两点都能至少保证单向连通. 思路:使用tarjan算法求强连通分量然后进行缩点,形成一个新图,易知新图中的每个点内部的内部点都能保 ...
- 【HDU1960】Taxi Cab Scheme(最小路径覆盖)
Taxi Cab Scheme Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- loj 1429(可相交的最小路径覆盖)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1429 思路:这道题还是比较麻烦的,对于求有向图的可相交的最小路径覆盖,首先要解决成环问 ...
- 【HDU3861 强连通分量缩点+二分图最小路径覆盖】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意:一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.有边u到v以及有 ...
- POJ 3216 最小路径覆盖+floyd
Repairing Company Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 6646 Accepted: 178 ...
- POJ3020Antenna Placement(最小路径覆盖+重在构图)
Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7788 Accepted: 3880 ...
随机推荐
- linux下order by 报出ORDER BY clause is not in SELECT list
一.问题: 在程序执行查询的时候,order by 不能找到要排序的列 二.解决: 在linux环境下,程序之前连接其他库可以正常运行,但是换了一个库后数据就不能正常的显示了,查看后台报出排序列找不到 ...
- 北京Uber优步司机奖励政策(4月13日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Linux日志切割logrotate服务配置
一.logrotate介绍 logrotate软件是一个日志管理工具,用于非分隔日志,删除旧的日志文件,并创建新的日志文件,起到“转储作用”,可以为系统节省磁盘空间.一般centos系统已经自带安装好 ...
- 15、Java并发编程:Callable、Future和FutureTask
Java并发编程:Callable.Future和FutureTask 在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这2种方式都有一 ...
- angular中的$q服务实例
用于理解$q服务 参考:http://www.zouyesheng.com/angular.html#toc39 广义回调管理 和其它框架一样, ng 提供了广义的异步回调管理的机制. $http 服 ...
- Yii2 使用 faker 生成假数据
测试过程中有时候需要生成大量的假数据,faker 是一个生成假数据的类库,可以生成姓名,电话,IP地址,密码,ISBN等等你能想到的或者你想不到的各种类型的假数据. Yii2.0已经集成该类库,不用再 ...
- JS基础,课堂作业,三个数字排序
三个数字大小排序 <script> var a = parseInt(prompt("请输入第一个整数:")); var b = parseInt(prompt(&qu ...
- Oracle的集合运算符
Oracle的集合运算符有并集union.union all,交集intersect,差集minus 先建表myemp,进行集合运算的测试 create table myemp as select * ...
- 用EC5/EC6自定义class的区别及用法 -- Phaser3网页游戏框架
custom class EC6 自定义class class Brain extends Phaser.GameObjects.Sprite { constructor (scene, x, y ...
- spark读取外部配置文件的方法
spark读取外部配置文件的方法 spark-submit --files /tmp/fileName /tmp/test.jar 使用spark提交时使用--files参数,spark会将将本地的 ...