Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)
题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径。
先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上有一个点的度数是n-1,那么必然需要走一条生成树上的边,此时答案为x+y*(n-2).
否则可以不走生成树上的边,则答案为y*(n-1).
再考虑x<y的情况,那么应该尽量走生成树上的边,由于树上没有环,于是我们每一次需要走树的一条路,然后需要从非生成树上的边跳到树的另一个点上去,
显然跳的越少越好,于是我们只需要找到树的最小路径覆盖,跳路径覆盖数-1次就可以了。
对于有向图的最小路径覆盖,一般是使用二分图匹配或者最大流来解决的。
而对于树的最小路径覆盖,可以用树形DP来解决。
令dp[x][0]表示x不与x的父亲构成路径的最小路径覆盖数,dp[x][1]表示x与x的父亲构成路径的最小路径覆盖数。
那么则有:
x没有儿子,dp[x][0]=dp[x][1]=1.
x只有一个儿子,dp[x][0]=dp[x][1]=dp[son[x]][1];
x有两个或者更多儿子,dp[x][0]=min(dp[son[x][i]][1]+dp[son[x][j]][1]+dp[son[x]][0])-1. dp[x][1]=min(dp[son[x][i]][1]+dp[son[x]][0]);
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... struct Edge{int p, next;}edge[N<<];
int head[N], cnt=;
int dee[N], sum, dp[N][]; void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;}
void dfs(int x, int fa){
int siz=, sum=, f=-INF, s=-INF;
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
dfs(v,x); ++siz; sum+=dp[v][];
if (dp[v][]-dp[v][]>f) s=f, f=dp[v][]-dp[v][];
else if (dp[v][]-dp[v][]>s) s=dp[v][]-dp[v][];
}
if (siz==) dp[x][]=dp[x][]=;
else {
if (siz==) dp[x][]=sum-f, dp[x][]=sum-f;
else dp[x][]=sum-f-s-, dp[x][]=sum-f;
}
}
int main ()
{
int n, x, y, u, v;
scanf("%d%d%d",&n,&x,&y);
FO(i,,n) scanf("%d%d",&u,&v), add_edge(u,v), add_edge(v,u), ++dee[u], ++dee[v];
if (x>=y) {
bool flag=false;
FOR(i,,n) if (dee[i]==n-) flag=true;
if (flag) printf("%lld\n",(LL)(n-)*y+x);
else printf("%lld\n",(LL)(n-)*y);
}
else {
dfs(,);
printf("%lld\n",(LL)(dp[][]-)*y+(LL)(n-dp[][])*x);
}
return ;
}
Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)的更多相关文章
- CodeForces 618D Hamiltonian Spanning Tree
题意:要把所有的节点都访问一次,并且不能重复访问,有两种方式访问,一种是根据树上的路径 走和当前节点连接的下一个节点cost x, 或者可以不走树上边,直接跳到不与当前节点连接的节点,cost y 分 ...
- SPOJ UOFTCG - Office Mates (树的最小路径覆盖)
UOFTCG - Office Mates no tags Dr. Baws has an interesting problem. His N graduate students, while f ...
- SPOJ - UOFTCG 树的最小路径覆盖
//SPOJ - UOFTCG 树的最小路径覆盖 #include <bits/stdc++.h> #include <vector> using namespace std; ...
- HDU 3861 The King’s Problem(tarjan连通图与二分图最小路径覆盖)
题意:给我们一个图,问我们最少能把这个图分成几部分,使得每部分内的任意两点都能至少保证单向连通. 思路:使用tarjan算法求强连通分量然后进行缩点,形成一个新图,易知新图中的每个点内部的内部点都能保 ...
- 【HDU1960】Taxi Cab Scheme(最小路径覆盖)
Taxi Cab Scheme Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- loj 1429(可相交的最小路径覆盖)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1429 思路:这道题还是比较麻烦的,对于求有向图的可相交的最小路径覆盖,首先要解决成环问 ...
- 【HDU3861 强连通分量缩点+二分图最小路径覆盖】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意:一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.有边u到v以及有 ...
- POJ 3216 最小路径覆盖+floyd
Repairing Company Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 6646 Accepted: 178 ...
- POJ3020Antenna Placement(最小路径覆盖+重在构图)
Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7788 Accepted: 3880 ...
随机推荐
- 20155316 2016-2017-2 《Java程序设计》第2周学习总结
教材学习内容总结 学习主要内容:基本类型介绍及流程控制简介 关键点:关键记住JAVA的大体框架,可以类比C语言结合着记.相较于C不同且值得关注的主要信息有: 基本类型的不同:byte.boolean. ...
- weka使用笔记3---classfily API调用
分类器在数据挖掘中的作用不言而喻,weka中的分类器有很多种类型,但是weka在输出结果中,只输出了一个分类的预测的类型,没有输出分类的得分,有一些不给力.如果想知道得分和其预测的类的话,就得调用we ...
- logstash处理@timestamp时区
input { stdin { } } filter { #ruby { # code => "event.set('timestamp', event.get('@timestamp ...
- php-laravel安装与使用
1.框架作用 提供了一些主体功能,方便开发者快速开发 2.PHP框架 laravel ThinkPHP 3.首先要安装composer软件 1.作用 主要管理PH ...
- C# 合并多个结构相同的DataTable
public DataTable GetAllDataTable(DataSet ds) { DataTable newDataTable = ds.Tables[0].Clone(); //创建新表 ...
- Maven学习(十一)-----使用Maven创建Web应用程序项目
使用Maven创建Web应用程序项目 用到的技术/工具: Maven 3.3.3 Eclipse 4.3 JDK 8 Spring 4.1.1.RELEASED Tomcat 7 Logback 1. ...
- 《C++设计新思维》勘误,附C++14新解法
勘误: 原书(中文版)3.13节,65-69页中GenScatterHierarchy以及FieldHelper均存在问题,当TypeList中类型有重复时,无法通过编译(原因在于“二义性基类”). ...
- 003--MySQL 数据库事务
什么是事务? 事务是一组原子性的 SQL 查询, 或者说是一个独立的工作单元. 在事务内的语句, 要么全部执行成功, 要么全部执行失败. 事务的 ACID 性质 数据库事务拥有以下四个特性, 即 AC ...
- C++ STL 优先队列 priority_queue 详解(转)
转自https://blog.csdn.net/c20182030/article/details/70757660,感谢大佬. 优先队列 引入 优先队列是一种特殊的队列,在学习堆排序的时候就有所了解 ...
- 第五周PSP作业
PSP表格: 累积进度条: 折线图: 饼状图: