某加工厂有A、B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。你的任务就是:已知每个任务在A机器上加工所需的时间t1, B机器上加工所需的时间t2及由两台机器共同加工所需的时间t3,请你合理安排任务的调度顺序,使完成所有n个任务的总时间最少。

如果一个方案是最优的,那么把需要同时加工的任务都移动到最前面,显然不会变劣。后面两个机器的加工时间就都是独立的了。

所以用动态规划就可以不会有后效性了。因为顺序是不会受到影响的。

令dp[i][j]表示完成前i个任务时,机器A用了j时间时机器B用的最少时间。

那么则有dp[i][j]=min(dp[i-1][j-t1],dp[i-1][j]+t2,dp[i-1][j-t3]+t3);

时间复杂度O(nt).空间复杂度可以用滚动数组优化为O(t).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
//# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Node{int a, b, c;}node[N];
int dp[][N*]; int main ()
{
int n;
scanf("%d",&n);
FOR(i,,n) scanf("%d%d%d",&node[i].a,&node[i].b,&node[i].c);
int flag=;
FO(i,,N*) dp[flag][i]=INF;
dp[flag][]=;
FOR(i,,n) {
flag^=;
FO(j,,N*) dp[flag][j]=INF;
FO(j,,N*) {
if (node[i].a&&j>=node[i].a) dp[flag][j]=min(dp[flag][j],dp[flag^][j-node[i].a]);
if (node[i].b) dp[flag][j]=min(dp[flag][j],dp[flag^][j]+node[i].b);
if (node[i].c&&j>=node[i].c) dp[flag][j]=min(dp[flag][j],dp[flag^][j-node[i].c]+node[i].c);
}
}
int ans=INF;
FO(i,,N*) ans=min(ans,max(i,dp[flag][i]));
printf("%d\n",ans);
return ;
}

BZOJ 1222 产品加工(DP)的更多相关文章

  1. bzoj 1222: [HNOI2001]产品加工 dp

    1222: [HNOI2001]产品加工 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 381  Solved: 218[Submit][Status ...

  2. 【BZOJ 1222】 [HNOI2001] 产品加工(DP)

    Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机 ...

  3. Bzoj 1222: [HNOI2001]产品加工 动态规划

    1222: [HNOI2001]产品加工 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 486  Solved: 298[Submit][Status ...

  4. bzoj 1222 DP

    用w[i]表示在A中用了i的时间时在B中最少用多长时间,然后转移就可以了. 备注:这个边界不好定义,所以可以每次用一个cur来存储最优值,然后对w[i]赋值就可以了. /*************** ...

  5. BZOJ 1222: [HNOI2001]产品加工

    F[i]表示第一个机器用了i的时间,第二个机器的最小时间 转移即可 #include<cstdio> #include<algorithm> using namespace s ...

  6. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  7. BZOJ1222[HNOI2001]产品加工——DP

    题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  8. 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]

    题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...

  9. 【BZOJ1222】[HNOI2001]产品加工 DP

    [BZOJ1222][HNOI2001]产品加工 Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同 ...

随机推荐

  1. [2016北京集训试题8]连在一起的幻想乡[dp+无向图计数]

    Description Solution 本博客参考yww大佬的博客,为了加深理解我就自己再写一遍啦. 以下的“无向图”均无重边无自环. 定义f0[n]为n个点构成的无向图个数,f1[n]为n个点构成 ...

  2. RHCE-EXAM 模拟题目

    真实考试环境说明: 你考试所用的真实物理机器会使用普通账号自动登陆,登陆后,桌面会有两个虚拟主机图标,分别是system1和system2.所有的考试操作都是在system1和system2上完成.S ...

  3. 使用 AFNetworking做过断点续传吗?

    断点续传的主要思路: 检查服务器文件信息 检查本地文件 如果比服务器文件小, 断点续传, 利用 HTTP 请求头的 content-range实现断点续传(如果content-range不存在就取Co ...

  4. sql server 按月对数据表进行分区

    当某张数据表数据量较大时,我们就需要对该表进行分区处理,以下sql语句,会将数据表按月份,分为12个分区表存储数据,废话不多说,直接上脚本: use [SIT_L_TMS] --开启 XP_CMDSH ...

  5. php文章tag标签的增删

    <?php session_start();   if($_POST){           $_SESSION['old']=array('one','two','three','four', ...

  6. 基础的Servlet

    1.认识Servlet 今天接触了Servlet,我就写了这篇Servlet的文章.首先,我们了解一下Servlet是什么: 这是百度百科的解释,我个人理解是可以用来前后端交互的一个东西,例如可以实现 ...

  7. MySQL-MMM方案

    参考文档: 官方文档:http://mysql-mmm.org/mmm2:guide 本文对mmm方案做简单介绍,并做1个简单的验证. 一.MySQL-MMM方案 1. MMM方案简介 MMM(Mul ...

  8. cinder的组件

    跟nova相似,cinder也有很多组件,每个组件负责各自的业务,然后共同协作完成volume的管理.组件之间的通信方式与nova个组件之间的通信方式相同,都是通过消息队列进行通信. cinder-a ...

  9. hbase实战——(1.1 nosql介绍)

    什么是nosql NoSQL(NoSQL = Not Only SQL),意思是不仅仅是SQL的扩展,一般指的是非关系型的数据库. 随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0 ...

  10. curl常用用法

    -v显示请求详细信息 curl www.baidu.com -v -X 指定请求方式 GET请求 curl -X GET http://localhost:8080/search?data=123 # ...