Network of Schools POJ - 1236(强连通+缩点)
题目大意
有N个学校,这些学校之间用一些单向边连接,若学校A连接到学校B(B不一定连接到A),那么给学校A发一套软件,则学校B也可以获得。现给出学校之间的连接关系,求出至少给几个学校分发软件,才能使得所有的学校均可以获得软件;以及,至少需要添加几条单向边连接学校,才能使得给这些学校中任何一所发软件,其余的学校均可以收到。
题目分析
在一个图中,强连通分支内的任何一个点被“发软件”,则分支内的所有点均可以获得,因此首先求出强连通分支,将强连通分支合并为一点来看。
重构之后的图若只有一个点,则只需要向任何一所学校发送即可。即结果为1(至少向1所学校发布软件) 0(不需要添加新边来使得整个图连通).
重构之后的图若有多个点,则考虑这些点中入度为0的点:入度为0的点不能被其他点到达,而一个入度不为0的点可以从某个入度为0的点到达,那么只需要向这些入度为0的点分发软件,就可以使得所有的点均能获得软件。
重构之后的图中有出度为0的点,在图中,入度为0的点(设为m个)无法从其他点到达,那么为了使得所有的点连通,需要m条路径连接到这m个入度为0的点;而出度为0的点(设为n个)无法到达其他点,那么为了使得所有的点连通,需要n条路径从这n个出度为0的点连出。于是,至少需要添加 max(m, n)条边,使得图中所有的点的入度和出度不为0.
同时,在一个有向无环图中,如果该图的所有点均可连接到一块,且每个点的出度和入度均不为0,则该图肯定强连通。于是,结果为 max(m,n)
题意转自:https://www.cnblogs.com/gtarcoder/p/4871267.html
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <cmath>
#include <stack>
#define mem(a, b) memset(a, b, sizeof(a))
using namespace std;
const int maxn = , INF = 0x7fffffff;
vector<int> G[maxn];
int pre[maxn], lowlink[maxn], sccno[maxn];
int in[maxn], out[maxn];
int dfs_clock, scc_cnt, n;
stack<int> s; void dfs(int u)
{
pre[u] = lowlink[u] = ++dfs_clock;
s.push(u);
for(int i=; i<G[u].size(); i++)
{
int v = G[u][i];
if(!pre[v])
{
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if(!sccno[v])
lowlink[u] = min(lowlink[u], pre[v]);
}
if(lowlink[u] == pre[u])
{
scc_cnt++;
for(;;)
{
int x = s.top(); s.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void calcu()
{
int t1 = , t2 = ;
mem(in, );
mem(out, );
dfs_clock = scc_cnt = ;
mem(sccno, );
mem(pre, );
for(int i=; i<=n; i++)
if(!pre[i])
dfs(i);
for(int i=; i<=n; i++)
for(int j=; j<G[i].size(); j++)
if(sccno[i] != sccno[G[i][j]])
out[sccno[i]]++, in[sccno[G[i][j]]]++;
for(int i=; i<=scc_cnt; i++)
{
if(in[i] == )
t1++;
if(out[i] == )
t2++;
}
if (scc_cnt == ) printf("1\n0\n");
else
printf("%d\n%d\n",t1,max(t2,t1)); } int main()
{
cin>> n;
for(int i=; i<=n; i++)
{
for(;;)
{
int v;
cin>> v;
if(v == ) break;
G[i].push_back(v); }
}
calcu(); return ;
}
Network of Schools POJ - 1236(强连通+缩点)的更多相关文章
- A - Network of Schools - poj 1236(求连通分量)
题意:学校有一些单向网络,现在需要传一些文件,1,求最少需要向几个学校分发文件才能让每个学校都收到,2,需要添加几条网络才能在任意一个学校分发都可以传遍所有学校. 分析:首先应该求出来连通分量,进行缩 ...
- Network of Schools POJ - 1236 (强联通)
一些学校连接到了一个计算机网络.网络中的学校间有如下约定:每个学校维护一个列表,当该学校收到软件或信息后将会转发给列表中的所有学校(也就是接收方列表).需要注意的是如果B学校在A学校的接收方列表中,A ...
- Network of Schools POJ - 1236 有向强连通图
//题意://给你n个学校,其中每一个学校都和一些其他学校有交流,但是这些边都是单向的.你至少需要给几个学校//传递消息可以使全部学校都收到消息,第二问你最少添加几条边可以使它变成一个强连通图//题解 ...
- poj 2553强连通+缩点
/*先吐槽下,刚开始没看懂题,以为只能是一个连通图0T0 题意:给你一个有向图,求G图中从v可达的所有点w,也都可以达到v,这样的v称为sink.求这样的v. 解;求强连通+缩点.求所有出度为0的点即 ...
- POJ 1236 Network of Schools (tarjan算法+缩点)
思路:使用tarjan求强连通分量并进行缩点,判断所有入度为0的点,这个点就是必须要给予文件的点,分别计算出度,入度为零的点的个数,取二者的最大值就是把这个图变成强连通需要加的边数. 一个取值需要讨论 ...
- poj 3114(强连通缩点+SPFA)
题目链接:http://poj.org/problem?id=3114 思路:题目要求很简单,就是求两点之间的花费的最短时间,不过有一个要求:如果这两个city属于同一个国家,则花费时间为0.如何判断 ...
- Network of Schools(POJ1326+有向图进行缩点)
题目链接:http://poj.org/problem?id=1236 题目: 题意:对于n个学校,对于一个系统传给某个学校,那么他会传给他得支援学校.从第二开始,每行给你多个数字,表示第i个学校可以 ...
- POJ 1236 SCC+缩点
题意:一张有向图,一问至少给几个点发送软件,才能让所有点都能收到软件:二问是至少添加几条边才能让整个图是一个连通分量: 分析:一般求连通分量都会求缩点,在这里缩点之后,生成一张新的图,在新的图中求每一 ...
- poj 1236强连通图缩点
题目链接:http://poj.org/problem?id=1236 #include <cstdio> #include <cmath> #include <algo ...
随机推荐
- (推荐)用C++来开发Skyline应用
原文地址:http://www.hailongchang.org/index.php/archives/category/terraexplorer 供大家学习参考.
- Hive 创建表
创建表的三种方式: 方式一:新建表结构 CREATE TABLE emp( empno int, ename string ) ROW FORMAT DELIMITED FIELDS TERMINAT ...
- Luogu4630 APIO2018 Duathlon 圆方树、树形DP
传送门 要求的是一条按顺序经过\(s,t,c\)三个点的简单路径.简单路径的计数问题不难想到点双联通分量,进而使用圆方树进行求解. 首先将原图缩点,对于一个大小为\(size\)的点双联通分量内,在这 ...
- Intel x86_64 Architecture Background 3
多层次的cache结构解决了CPU和DRAM之间处理速度不一致的问题,在Intel体系架构下,CPU核心和主存DRAM之间有着三层的cache.其中一层缓存L1和二层缓存L2在CPU核心(core)中 ...
- 发布了一个基于jieba分词的ElasticSearch插件
github地址: https://github.com/hongfuli/elasticsearch-analysis-jieba 基于 jieba 的 elasticsearch 中文分词插件. ...
- Pandas简易入门(一)
目录: 读取数据 索引 选择数据 简单运算 声明,本文引用于:https://www.dataquest.io/mission/8/introduction-to-pandas (建议阅读原文) Pa ...
- 初级Java工程师面试所遇面试题
1.servlet的生命周期 : 一.百度百科 : 1.客户端请求servlet: 2.加载servlet类到内存: 3.实例化并调用init()方法初始化servlet: 4.调用service() ...
- 结对项目 Pair Project
结对项目 Pair Project 一人编程,一人操作,共同检查. 源码 https://github.com/dpch16303/test/blob/master/%E5%AE%9E%E8%B7%B ...
- 使用Java+Kotlin双语言的LeetCode刷题之路(二)
BasedLeetCode LeetCode learning records based on Java,Kotlin,Python...Github 地址 序号对应 LeetCode 中题目序号 ...
- vue props 用法(转载)
前面的话 组件接受的选项大部分与Vue实例一样,而选项props是组件中非常重要的一个选项.在 Vue 中,父子组件的关系可以总结为 props down, events up.父组件通过 props ...