题目描述

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

输入

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1 
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
 

输出

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

样例输入

5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3

样例输出

6
9
13

提示

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。

  算是树剖的模板题了,在线段树上架树剖序,子树修改直接修改区间,查询就往上爬,边爬边求和就好。注意要开longlong!

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int son[100010];
int size[100010];
int s[100010];
int t[100010];
int q[100010];
int v[100010];
int top[100010];
int f[100010];
int head[100010];
int to[200010];
int next[200010];
ll sum[800010];
ll a[800010];
int num;
int tot;
int x,y;
int n,m;
int opt;
ll ans;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x,int fa)
{
f[x]=fa;
size[x]=1;
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
dfs(to[i],x);
size[x]+=size[to[i]];
if(size[son[x]]<size[to[i]])
{
son[x]=to[i];
}
}
}
}
void dfs2(int x,int tp)
{
s[x]=++num;
q[num]=x;
top[x]=tp;
if(son[x])
{
dfs2(son[x],tp);
}
for(int i=head[x];i;i=next[i])
{
if(to[i]!=f[x]&&to[i]!=son[x])
{
dfs2(to[i],to[i]);
}
}
t[x]=num;
}
void pushup(int rt)
{
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void pushdown(int rt,int l,int r)
{
if(a[rt]!=0)
{
int mid=(l+r)>>1;
a[rt<<1]+=a[rt];
a[rt<<1|1]+=a[rt];
sum[rt<<1]+=a[rt]*(mid-l+1);
sum[rt<<1|1]+=a[rt]*(r-mid);
a[rt]=0;
}
}
void change(int rt,int l,int r,int L,int R,int v)
{
if(L<=l&&r<=R)
{
a[rt]+=1ll*v;
sum[rt]+=1ll*v*(r-l+1);
return ;
}
pushdown(rt,l,r);
int mid=(l+r)>>1;
if(L<=mid)
{
change(rt<<1,l,mid,L,R,v);
}
if(R>mid)
{
change(rt<<1|1,mid+1,r,L,R,v);
}
pushup(rt);
}
ll query(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
{
return sum[rt];
}
pushdown(rt,l,r);
ll res=0;
int mid=(l+r)>>1;
if(L<=mid)
{
res+=query(rt<<1,l,mid,L,R);
}
if(R>mid)
{
res+=query(rt<<1|1,mid+1,r,L,R);
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
}
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs(1,1);
dfs2(1,1);
for(int i=1;i<=n;i++)
{
change(1,1,n,s[i],s[i],v[i]);
}
for(int i=1;i<=m;i++)
{
scanf("%d",&opt);
if(opt==1)
{
scanf("%d%d",&x,&y);
change(1,1,n,s[x],s[x],y);
}
else if(opt==2)
{
scanf("%d%d",&x,&y);
change(1,1,n,s[x],t[x],y);
}
else
{
scanf("%d",&x);
ans=0;
while(top[x]!=1)
{
ans+=query(1,1,n,s[top[x]],s[x]);
x=f[top[x]];
}
ans+=query(1,1,n,1,s[x]);
printf("%lld\n",ans);
}
}
}

BZOJ4034[HAOI2015]树上操作——树链剖分+线段树的更多相关文章

  1. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  2. bzoj4034 (树链剖分+线段树)

    Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...

  3. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  4. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

  5. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  6. B20J_3231_[SDOI2014]旅行_树链剖分+线段树

    B20J_3231_[SDOI2014]旅行_树链剖分+线段树 题意: S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,城市信仰不同的宗教,为了方便,我们用不同的正整数代表各种宗教. S国 ...

  7. 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树

    正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...

  8. BZOJ4551[Tjoi2016&Heoi2016]树——dfs序+线段树/树链剖分+线段树

    题目描述 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下 两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均 ...

  9. BZOJ2325[ZJOI2011]道馆之战——树链剖分+线段树

    题目描述 口袋妖怪(又名神奇宝贝或宠物小精灵)红/蓝/绿宝石中的水系道馆需要经过三个冰地才能到达馆主的面前,冰地中 的每一个冰块都只能经过一次.当一个冰地上的所有冰块都被经过之后,到下一个冰地的楼梯才 ...

  10. fzu 2082 过路费 (树链剖分+线段树 边权)

    Problem 2082 过路费 Accept: 887    Submit: 2881Time Limit: 1000 mSec    Memory Limit : 32768 KB  Proble ...

随机推荐

  1. rook 排错记录 + Orphaned pod found kube-controller-manager的日志输出

    1.查看rook-agent(重要)和mysql-wordpress 的日志,如下: MountVolume.SetUp failed for volume "pvc-f002e1fe-46 ...

  2. excel的宏与VBA入门——代码调试

    直接介绍重点: 常用的操作是导航栏的逐句与断点: 添加断点:调试->切换断点 单步运行:调试->逐句 查看变量的窗口:视图->本地窗口

  3. mysql利用binlog进行数据恢复

    目录 mysql利用binlog进行数据恢复 binlog基本配置和格式 binlog基本配置 查看binlog状态 binlog的三种格式 转换成sql mysql自带的mysqlbinlog 利用 ...

  4. 阿里云telnet 3306端口失败

    在阿里云的服务器上安装了MySQL, 然后远程访问总是不通. 查询了很久,排查思路如下: 检查mysql是否启动 检查本机3306端口是否处于监听状态 检查阿里云控制台是否开启了安全限制 检查mysq ...

  5. zookeepeer4字命令实践

    环境 leader:192.168.116.143 fllower:192.168.116.142 fllower:192.168.116.144 命令:conf——查看其他主机的配置文件 [root ...

  6. 谈谈ThreadLocal的设计及不足

    用Java语言开发的同学对 ThreadLocal 应该都不会陌生,这个类的使用场景很多,特别是在一些框架中经常用到,比如数据库事务操作,还有MVC框架中数据跨层传递.这里我们简要探讨下 Thread ...

  7. monkey测试基础

    一.环境配置 Java JDK和android SDK 二.基本命令 *安卓手机链接电脑,打开手机的开发者模式,允许usb调试 adb:检查adb是否安装成功 adb devices:查看连接的设备 ...

  8. tomcat内存溢出问题记录

    问题说明:公司内网环境中部署的jenkins代码发版平台突然不能访问了,查看tomcat的catalina.out日志发现报错如下: [root@redmine logs]# tail -f /srv ...

  9. Docker容器学习梳理 - 基础知识(1)

    Docker是PaaS 提供商 dotCloud 开源的一个基于 LXC 的高级容器引擎,源代码托管在 Github 上, 基于go语言并遵从Apache2.0协议开源.Docker是通过内核虚拟化技 ...

  10. JAVA中使用MD5加密实现密码加密

    1.新建Md5.java 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 package c ...