线性代数的本质与几何意义 02. 线性组合、张成的空间、基(3blue1brown 咪博士 图文注解版)
1. 线性组合
接下来我们要换一个角度来看向量。以二维平面直角坐标系为例,i, j 分别是沿 2 个坐标轴方向的单位向量。那么坐标平面上的其他向量,例如 [ 3 -2 ] [3−与 i, j 是什么关系呢?

将向量 i 沿水平向右的方向拉升 3 倍,向量 j 沿竖直向下的方向拉升 2 倍

这样,我们可以将向量 [ 3 -2 ] [3−2] 看成是将向量 i, j 缩放后再相加的结果

向量 i, j 称为基向量,其他向量都可以通过对基向量缩放再相加的方法构造出来。基向量缩放的倍数对应向量的各个分量,即向量对应的坐标。
我们可以通过选择不同的基向量来构造新的坐标系。例如,我们可以选择指向右上方的向量 v 和 指向右下方的向量 w 作为基向量。

对这组新的基向量进行缩放再相加,同样也能构造出其他的向量

一组基向量就对应一个坐标系,选择不同的基向量就构造出了不同的坐标系。同一个向量,在不同的坐标系下(即采用不同的基向量),其坐标值也要相应地发生变化。后面,咪博士会进一步谈到具体如何变换。
上面,反复出现 “将向量进行缩放再相加” 的操作,这样的操作,我们称之为 线性组合

2. 向量张成的空间
在二维平面中,选取 2 个向量,然后考虑它们所有可能的线性组合,我们会得到什么呢?这取决于我们选择的 2 个向量。
通常情况下,我们会得到整个平面

如果选择的 2 个向量,恰好共线的话,那它们的线性组合就被局限在一条过原点的直线上了

最极端的情况是,选择的 2 个向量都是零向量,那么它们的线性组合就只可能是零向量了

向量 v, w 的 全部线性组合 所构成的向量集合称为向量 v, w 所 张成的空间

还记得前面的教程中,咪博士谈到数乘和加法是向量 2 个最基础的运算吗?当我们谈论向量所张成的空间时,我们实际上就是在问,仅仅通过数乘和加法 2 种基础运算,你能获得的所有可能的向量集合是什么。
在线性代数中,向量的起点始终固定在原点的位置,因此 向量的终点就唯一确定了向量本身。这样,我们便可以将向量看成是空间中的点(即向量的终点)。
3. 线性相关、线性无关
将线性组合的想法扩展到 3 维空间中。想象 3 个 3 维向量,它们所张成的空间会是什么样的呢?这取决于我们选择的 3 个向量。
- a. 通常情况下,我们会得到整个 3 维空间
- b. 当选择的 3 个向量共面时,它们所张成的空间是一个过原点的平面
- c. 当 3 个向量共线时,它们所张成的空间是一条过原点的直线
- d. 当 3 个向量都是零向量时,它们所张成的空间只包含零向量
显然,在考虑向量所张成的空间时,有些向量是多余的。例如,情况 b ,确定一个平面只需要 2 个向量,而我们却用了 3 个向量,这意味着,有 1 个向量是多余的;情况 c,确定一条直线只需要 1 个向量就够了,而我们用了 3 个向量,其中有 2 个向量是多余的。数学上,我们用线性相关来描述这样的现象。
当我们说几个向量所构成的向量组线性相关时,意思是向量组中的(任意)一个向量都可以用向量组中其他向量的线性组合来表示出来。换句话讲,这个向量已经落在其他向量所张成的空间中,它对整个向量组张成的空间是没有贡献的,把它从向量组中拿掉,并不会影响向量组所张成的空间。

线性无关指的是,向量组中的(任意)一个向量无法用向量组中其他向量的线性组合表示出来。换句话说,向量组中的每一个向量都为向量组所张成的空间贡献了一个维度,每一个向量都缺一不可,少了任何一个向量,都会改变向量组所张成的空间。

4. 基的严格定义
最后,我们把本节相关的概念串起来,形成基的严格定义:
向量空间的一组 基 是 张成 该空间的一个 线性无关 向量集

原文链接:http://www.ipaomi.com/2017/11/21/线性代数的本质与几何意义-02-线性组合、张成的空/
线性代数的本质与几何意义 02. 线性组合、张成的空间、基(3blue1brown 咪博士 图文注解版)的更多相关文章
- 线性代数的本质与几何意义 03. 矩阵与线性变换 (3blue1brown 咪博士 图文注解版)
首先,恭喜你读到了咪博士的这篇文章.本文可以说是该系列最重要.最核心的文章.你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么.读完咪博士的这篇文章,你一定会有一种醍醐灌顶.豁然开朗的感觉! ...
- 线性代数的本质与几何意义 01. 向量是什么?(3blue1brown 咪博士 图文注解版)
向量是线性代数最基础.最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么? 向量之所以让人迷糊,是因为我们在物理.数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是 ...
- 线性代数的28法则:作为程序员掌握这些API就够用了……
目录 1. 向量 & 矩阵 1.1. 问: np.ndarray 与 np.matrix 的区别 1.2. 向量空间 2. 算术运算 2.1. 为什么线性代数定义的乘积运算不按照加法的规则(按 ...
- 线性代数的视角理解LSR(least square regression)的参数评估算法本质
https://medium.com/@andrew.chamberlain/the-linear-algebra-view-of-least-squares-regression-f67044b7f ...
- 02两栈共享空间_DoubleStack--(栈与队列)
#include "stdio.h" #include "stdlib.h" #include "io.h" #include " ...
- [树莓派(raspberry pi)] 02、PI3安装openCV开发环境做图像识别(详细版)
前言 上一篇我们讲了在linux环境下给树莓派安装系统及入门各种资料 ,今天我们更进一步,尝试在PI3上安装openCV开发环境. 博主在做的过程中主要参考一个国外小哥的文章(见最后链接1),不过其教 ...
- Java 使用 Apache commons-math3 线性拟合、非线性拟合实例(带效果图)
Java 使用 CommonsMath3 的线性和非线性拟合实例,带效果图 例子查看 GitHub Gitee 运行src/main/java/org/wfw/chart/Main.java 即可查看 ...
- 带你领会 线性代数 微积分的本质 3blue1brown 动画效果帅出天际
前段时间在 哔哩哔哩 上偶然发现了 3blue1brown 精美的动画,配上生动的讲解,非常适合帮助建立数学的形象思维 其中两大系列,非常值得反复观看: 线性代数的本质(Essence of line ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
随机推荐
- 在Windows中安装PostgreSQL
在Windows中安装PostgreSQL 虽然PostgreSQL是为类UNIX平台开发的,但它却是可以移植的.从7.1版本开始,PostgreSQL可以编译安装和作为一个PostgreSQL服务器 ...
- Java/JSP程序连接不上Mysql驱动问题解决方法
错误提示: java.lang.ClassNotFoundException: com.mysql.jdbc.Driverat java.net.URLClassLoader$1.run(URLCla ...
- Keil5 如何安装STM32 芯片包
http://www.keil.com/dd2/Pack/ 从该网址下载 相应芯片的PACK 包
- AI 线性代数
1.标量.向量.矩阵和张量 1)标量(scalar),一个数,例如自然数和实数. 2)向量(vector),一列有序数.可以看作只有一列的矩阵. 3)矩阵(matrix),二维数组.转置(transp ...
- FreeRTOS队列
简单来讲队列是任务间通信的方式,队列本身是可以存储消息的,队列的消息可以由一个或者多个任务写入,也可以由一个或者多个任务读出,总之消息队列是任务间通信方式:
- Omi框架学习之旅 - 插件机制之omi-transform及原理说明
给omi-transform插件做个笔记,使用起来也很爽. transform.js这个库,一直想写一篇帖子的,可是,数学不好,三维矩阵和二位矩阵理解的不好,所以迟迟没写了, 这也是一个神库,反正我很 ...
- 重度使用示波器进行优化分析——一个DSDA项目回顾
这是若干年前一个项目,最近有时间整理一下.回忆起来,印象最深刻的就是重度使用示波器辅助分析,进行优化. 项目背景是在原有项目3G+项目基础上,增加一颗2G+ Modem,使支持DSDA功能. 在介绍D ...
- 数据库sql的in操作,解决in的过多
一个sql的拼写后,服务器会把这个sql传送到数据库服务器执行,一般不在一个物理机上.那么传送需要走网络,包丢失等网络情况就可能出现. 一般情况,一个sql的长度不会很大,但是有种这样的情况.in操作 ...
- LiveCharts文档-3开始-6轴Axes
原文:LiveCharts文档-3开始-6轴Axes LiveCharts文档-3开始-6轴Axes 通常来说,你可以自定义LiveChart里的任何东西,Axes也不例外.下面这幅图展示了Axes. ...
- Sharding模式
将数据存储为一组水平的数据分区.这种模式可以在存储和访问大量的数据的时候提高可扩展性. 场景和问题 由单个服务器托管的数据存储可能受到下列限制: 存储空间限制.基于大规模云应用所使用的数据仓库,可能会 ...