线性代数的本质与几何意义 02. 线性组合、张成的空间、基(3blue1brown 咪博士 图文注解版)
1. 线性组合
接下来我们要换一个角度来看向量。以二维平面直角坐标系为例,i, j 分别是沿 2 个坐标轴方向的单位向量。那么坐标平面上的其他向量,例如 [ 3 -2 ] [3−与 i, j 是什么关系呢?
将向量 i 沿水平向右的方向拉升 3 倍,向量 j 沿竖直向下的方向拉升 2 倍
这样,我们可以将向量 [ 3 -2 ] [3−2] 看成是将向量 i, j 缩放后再相加的结果
向量 i, j 称为基向量,其他向量都可以通过对基向量缩放再相加的方法构造出来。基向量缩放的倍数对应向量的各个分量,即向量对应的坐标。
我们可以通过选择不同的基向量来构造新的坐标系。例如,我们可以选择指向右上方的向量 v 和 指向右下方的向量 w 作为基向量。
对这组新的基向量进行缩放再相加,同样也能构造出其他的向量
一组基向量就对应一个坐标系,选择不同的基向量就构造出了不同的坐标系。同一个向量,在不同的坐标系下(即采用不同的基向量),其坐标值也要相应地发生变化。后面,咪博士会进一步谈到具体如何变换。
上面,反复出现 “将向量进行缩放再相加” 的操作,这样的操作,我们称之为 线性组合
2. 向量张成的空间
在二维平面中,选取 2 个向量,然后考虑它们所有可能的线性组合,我们会得到什么呢?这取决于我们选择的 2 个向量。
通常情况下,我们会得到整个平面
如果选择的 2 个向量,恰好共线的话,那它们的线性组合就被局限在一条过原点的直线上了
最极端的情况是,选择的 2 个向量都是零向量,那么它们的线性组合就只可能是零向量了
向量 v, w 的 全部线性组合 所构成的向量集合称为向量 v, w 所 张成的空间
还记得前面的教程中,咪博士谈到数乘和加法是向量 2 个最基础的运算吗?当我们谈论向量所张成的空间时,我们实际上就是在问,仅仅通过数乘和加法 2 种基础运算,你能获得的所有可能的向量集合是什么。
在线性代数中,向量的起点始终固定在原点的位置,因此 向量的终点就唯一确定了向量本身。这样,我们便可以将向量看成是空间中的点(即向量的终点)。
3. 线性相关、线性无关
将线性组合的想法扩展到 3 维空间中。想象 3 个 3 维向量,它们所张成的空间会是什么样的呢?这取决于我们选择的 3 个向量。
- a. 通常情况下,我们会得到整个 3 维空间
- b. 当选择的 3 个向量共面时,它们所张成的空间是一个过原点的平面
- c. 当 3 个向量共线时,它们所张成的空间是一条过原点的直线
- d. 当 3 个向量都是零向量时,它们所张成的空间只包含零向量
显然,在考虑向量所张成的空间时,有些向量是多余的。例如,情况 b ,确定一个平面只需要 2 个向量,而我们却用了 3 个向量,这意味着,有 1 个向量是多余的;情况 c,确定一条直线只需要 1 个向量就够了,而我们用了 3 个向量,其中有 2 个向量是多余的。数学上,我们用线性相关来描述这样的现象。
当我们说几个向量所构成的向量组线性相关时,意思是向量组中的(任意)一个向量都可以用向量组中其他向量的线性组合来表示出来。换句话讲,这个向量已经落在其他向量所张成的空间中,它对整个向量组张成的空间是没有贡献的,把它从向量组中拿掉,并不会影响向量组所张成的空间。
线性无关指的是,向量组中的(任意)一个向量无法用向量组中其他向量的线性组合表示出来。换句话说,向量组中的每一个向量都为向量组所张成的空间贡献了一个维度,每一个向量都缺一不可,少了任何一个向量,都会改变向量组所张成的空间。
4. 基的严格定义
最后,我们把本节相关的概念串起来,形成基的严格定义:
向量空间的一组 基 是 张成 该空间的一个 线性无关 向量集
原文链接:http://www.ipaomi.com/2017/11/21/线性代数的本质与几何意义-02-线性组合、张成的空/
线性代数的本质与几何意义 02. 线性组合、张成的空间、基(3blue1brown 咪博士 图文注解版)的更多相关文章
- 线性代数的本质与几何意义 03. 矩阵与线性变换 (3blue1brown 咪博士 图文注解版)
首先,恭喜你读到了咪博士的这篇文章.本文可以说是该系列最重要.最核心的文章.你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么.读完咪博士的这篇文章,你一定会有一种醍醐灌顶.豁然开朗的感觉! ...
- 线性代数的本质与几何意义 01. 向量是什么?(3blue1brown 咪博士 图文注解版)
向量是线性代数最基础.最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么? 向量之所以让人迷糊,是因为我们在物理.数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是 ...
- 线性代数的28法则:作为程序员掌握这些API就够用了……
目录 1. 向量 & 矩阵 1.1. 问: np.ndarray 与 np.matrix 的区别 1.2. 向量空间 2. 算术运算 2.1. 为什么线性代数定义的乘积运算不按照加法的规则(按 ...
- 线性代数的视角理解LSR(least square regression)的参数评估算法本质
https://medium.com/@andrew.chamberlain/the-linear-algebra-view-of-least-squares-regression-f67044b7f ...
- 02两栈共享空间_DoubleStack--(栈与队列)
#include "stdio.h" #include "stdlib.h" #include "io.h" #include " ...
- [树莓派(raspberry pi)] 02、PI3安装openCV开发环境做图像识别(详细版)
前言 上一篇我们讲了在linux环境下给树莓派安装系统及入门各种资料 ,今天我们更进一步,尝试在PI3上安装openCV开发环境. 博主在做的过程中主要参考一个国外小哥的文章(见最后链接1),不过其教 ...
- Java 使用 Apache commons-math3 线性拟合、非线性拟合实例(带效果图)
Java 使用 CommonsMath3 的线性和非线性拟合实例,带效果图 例子查看 GitHub Gitee 运行src/main/java/org/wfw/chart/Main.java 即可查看 ...
- 带你领会 线性代数 微积分的本质 3blue1brown 动画效果帅出天际
前段时间在 哔哩哔哩 上偶然发现了 3blue1brown 精美的动画,配上生动的讲解,非常适合帮助建立数学的形象思维 其中两大系列,非常值得反复观看: 线性代数的本质(Essence of line ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
随机推荐
- [转]Qt中定时器使用的两种方法
Qt中定时器的使用有两种方法,一种是使用QObject类提供的定时器,还有一种就是使用QTimer类. 其精确度一般依赖于操作系统和硬件,但一般支持20ms.下面将分别介绍两种方法来使用定时器. 方法 ...
- MATLAB 图形着色
1.matlab中的颜色查找表函数: (1)autumn:从红色向橘黄色.黄色平稳过渡: (2)bone:为含有较高的蓝色组分的gray颜色查找表: (3)colorcube:包含RGB颜色空间中尽可 ...
- nightwatch-前端自动化测试工具安装
最近再弄这个前端自动化测试工具,刚开始弄了几天,目前为止遇到很多坑,光是安装就费了不少时间,记录一下,以便自己忘记. 这里是它的官网,目前没找到中文版的官网,全英文,对我这个英语渣来说有点难理解. 一 ...
- 理解WebSocket心跳及重连机制(五)
理解WebSocket心跳及重连机制 在使用websocket的过程中,有时候会遇到网络断开的情况,但是在网络断开的时候服务器端并没有触发onclose的事件.这样会有:服务器会继续向客户端发送多余的 ...
- PAT A1138 Postorder Traversal (25 分)——大树的遍历
Suppose that all the keys in a binary tree are distinct positive integers. Given the preorder and in ...
- 关于linux系统如何实现fork的研究(一)
引言 fork函数是用于在linux系统中创建进程所使用,而最近看了看一个fork()调用是怎么从应用到glibc,最后到内核中实现的,这片文章就聊聊最近对这方面研究的收获吧.我们主要聊聊从g ...
- Docker系列学习
一.Docker入门 1.Docker概述与安装 2.Docker镜像管理 3.Docker容器管理 4.Docker数据管理 5.Docker网络配置 6.Docker图形化管理 7.Docker监 ...
- 开源数据同步神器——canal
前言 如今大型的IT系统中,都会使用分布式的方式,同时会有非常多的中间件,如redis.消息队列.大数据存储等,但是实际核心的数据存储依然是存储在数据库,作为使用最广泛的数据库,如何将mysql的数据 ...
- Docker容器学习梳理 - 应用程序容器环境部署
关于国内Docker镜像,可以参考:Docker容器学习梳理--基础知识(2) 的Docker镜像使用. 如果我们需要在Docker环境下部署tomcat.redis.mysql.nginx.php等 ...
- 对于VS软件的个人评价
因为还是一个菜鸟,对于VS这样的大软件还只能是自己个人的理解,以前用的是VC++,后来因为电脑系统更新,开始接触了VS,个人觉得还是vs2010更好用一些,作为一款windows平台应用程序的集成开发 ...