墙外通道:http://thinkiii.blogspot.com/2014/02/arm64-linux-kernel-virtual-address-space.html

Now let's talk about the Linux kernel virtual address space on 64-bit ARM CPU. You can find information about ARMv8 in ARM official website. http://www.arm.com/products/processors/armv8-architecture.php

One big problem on 32-bit CPUs is the limited 4GB limitation of virtual address spaces. The problem remains even if some PAE support since it focuses on the extension of physical address space not virtual address space. Things changes after the born of 64-bit CPUs: AMD64 and ARMv8, they can now support up to 2^64 addresses, which is uhh.. a very big number.

Actually 2^64 is too large, so in the Linux kernel implementation, only part of 64 bits are used (42 bits for CONFIG_ARM64_64K_PAGES, 39 bit for 4K page). This article is assuming 4K page is used (VA_BITS = 39 case)

#ifdef CONFIG_ARM64_64K_PAGES
#define VA_BITS (42)
#else
#define VA_BITS (39)
#endif
One good thing on ARM64 is that since we have enough virtual address bits, user space and kernel space can have their own 2^39 = 512GB virtual addresses!

All user virtual addresses have 25 leading zeros and kernel addresses have 25 leading ones. Address between user space and kernel space are not used and they are used to trap illegal accesses.

 ARM64 Linux virtual address space layout

kernel:

Although we have no ARM64 environment now, we can analysis the kernel virtual address space by reading the source code and observing a running AMD64 Linux box.

In arch/arm64/include/asm/memory.h, we can see the some differences: we have no lowmem zone, since the virtual address is so big that we can treat all memory of lowmem and do not have to worry about virtual address. (Yes, there is still a limit of kernel virtual address). Second, the order of different kernel virtual address changes:

#ifdef CONFIG_ARM64_64K_PAGES
#define VA_BITS (42)
#else
#define VA_BITS (39)
#endif
#define PAGE_OFFSET (UL(0xffffffffffffffff) << (VA_BITS - 1))
#define MODULES_END (PAGE_OFFSET)
#define MODULES_VADDR (MODULES_END - SZ_64M)
#define EARLYCON_IOBASE (MODULES_VADDR - SZ_4M)
        pr_notice("Virtual kernel memory layout:\n"
" vmalloc : 0x%16lx - 0x%16lx (%6ld MB)\n"
#ifdef CONFIG_SPARSEMEM_VMEMMAP
" vmemmap : 0x%16lx - 0x%16lx (%6ld MB)\n"
#endif
" modules : 0x%16lx - 0x%16lx (%6ld MB)\n"
" memory : 0x%16lx - 0x%16lx (%6ld MB)\n"
" .init : 0x%p" " - 0x%p" " (%6ld kB)\n"
" .text : 0x%p" " - 0x%p" " (%6ld kB)\n"
" .data : 0x%p" " - 0x%p" " (%6ld kB)\n",
MLM(VMALLOC_START, VMALLOC_END),
#ifdef CONFIG_SPARSEMEM_VMEMMAP
MLM((unsigned long)virt_to_page(PAGE_OFFSET),
(unsigned long)virt_to_page(high_memory)),
#endif
MLM(MODULES_VADDR, MODULES_END),
MLM(PAGE_OFFSET, (unsigned long)high_memory), MLK_ROUNDUP(__init_begin, __init_end),
MLK_ROUNDUP(_text, _etext),
MLK_ROUNDUP(_sdata, _edata));

see also:
arch/arm64/mm/init.c
arch/arm64/include/asm/pgtable.h

You can see that there is no pkmap or fixmap, it's because the kernel is assuming every memory has a valid kernel virtual address and there's no need to create pkmap/fixmap.

ARM64 kernel virtual address space layout

User space:
The memory layout implementation of user virtual address space looks like it does on ARM32. Since the available user space virtual address becomes 512GB, we can build a larger application on 64-bit CPUs.

One interesting topic is that ARM claims the ARMv8 is compatible with ARM 32-bit applications, all 32-bit applications can run on ARMv8 without modification.How does the 32-bit application virtual memory layout look like on a 64-bit kernel?

Actually, all process on 64-bit kernel is a 64-bit process. To run ARM 32-bit applications, Linux kernel still create a process from a 64-bit init process, but limit the user address space to 4GB. In this way, we can have both 32-bit and 64-bit application on a 64-bit Linux kernel.

#ifdef CONFIG_COMPAT
#define TASK_SIZE_32 UL(0x100000000)
#define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \
TASK_SIZE_32 : TASK_SIZE_64)
#else
#define TASK_SIZE TASK_SIZE_64
#endif /* CONFIG_COMPAT */

64-bit ARM applications on 64-bit Linux kernel

ARM64 64-bit user space program virtual address space layout

32-bit ARM applications on 64-bit Linux kernel

ARM64 32-bit user space program virtual address space layout

Note that the 32-bit application still have a 512GB kernel virtual address space and do not share it's own 4GB of virtual address space with kernel, the user applications have a complete 4GB of virtual address. On the other hand, 32-bit applications on 32-bit kernel have only 3GB of virtual address space.

ARM64 Linux kernel virtual address space的更多相关文章

  1. ARM32 Linux kernel virtual address space

    http://thinkiii.blogspot.jp/2014/02/arm32-linux-kernel-virtual-address-space.html   The 32-bit ARM C ...

  2. Memory Layout (Virtual address space of a C process)

    Memory Layout (Virtual address space of a C process) 分类: C语言基础2012-12-06 23:16 2174人阅读 评论(0) 收藏 举报 f ...

  3. linux内核可以接受的参数 | Linux kernel启动参数 | 通过grub给内核传递参数

    在Linux中,给kernel传递参数以控制其行为总共有三种方法: 1.build kernel之时的各个configuration选项. 2.当kernel启动之时,可以参数在kernel被GRUB ...

  4. Linux kernel学习-内存管理【转】

    转自:https://zohead.com/archives/linux-kernel-learning-memory-management/ 本文同步自(如浏览不正常请点击跳转):https://z ...

  5. Linux kernel Programming - Allocating Memory

    kmalloc #include <linux/slab.h> void *kmalloc(size_t size,int flags); void kfree(void *addr); ...

  6. Linux kernel学习-内存管理

    转自:https://zohead.com/archives/linux-kernel-learning-memory-management/ 本文同步自(如浏览不正常请点击跳转):https://z ...

  7. Android linux kernel privilege escalation vulnerability and exploit (CVE-2014-4322)

    In this blog post we'll go over a Linux kernel privilege escalation vulnerability I discovered which ...

  8. Linux Kernel - Debug Guide (Linux内核调试指南 )

    http://blog.csdn.net/blizmax6/article/details/6747601 linux内核调试指南 一些前言 作者前言 知识从哪里来 为什么撰写本文档 为什么需要汇编级 ...

  9. Linux kernel memory-faq.txt

    ## Linux kernel memory-faq.txt What is some existing documentation on Linux memory management? Ulric ...

随机推荐

  1. python加密解密算法

    https://www.cnblogs.com/xiao-apple36/p/8744408.html

  2. Map 数据结构

    JavaScript 的对象(Object),本质上是键值对的集合(Hash 结构),但是传统上只能用字符串当作键.这给它的使用带来了很大的限制. 为了解决这个问题,ES6 提供了 Map 数据结构. ...

  3. 原子性 CAS算法

    一. i++ 的原子性问题 1.问题的引入: i++ 的实际操作分为三个步骤:读--改--写 实现线程,代码如下: public class AtomicDemo implements Runnabl ...

  4. Linux 只列出目录的方法

    1. ls -d 2. find -type d -maxdepth 1 3. ls -F | grep "/$" 4. ls -l | grep "^d"

  5. Linux环境下java开发环境搭建二 tomcat搭建

    第一步:下载安装包并解压 # tar zxvf 压缩包名 第二步:把解压出的文件移动到/usr/local/tomcat7中 #mv 解压出来的文件夹  /usr/local/tomcat7 第三步: ...

  6. JSP内置对象page/pageContext/Config/Exception

    Config对象 config对象实是在一个Servlet初始化时,JSP引擎向它传递信息用的,此信息包括Servlet初始化时所要用到的参数(通过属性名和属性值构成)以及服务器的有关信息(通过传递一 ...

  7. Django连接Oracle数据库配置

    Django项目中,settings.py文件中: service_name DATABASES = { 'default': { 'ENGINE': 'django.db.backends.orac ...

  8. CSS样式总结(作业六)

    1:CSS基本介绍 CSS全称为“层叠样式表 (Cascading Style Sheets)”,它主要是用于定义HTML内容在浏览器内的显示样式,如文字大小.颜色.字体加粗等. css 样式由选择符 ...

  9. 第一个Python小爬虫

    这个爬虫是参考http://python.jobbole.com/81353/这篇文章写的 这篇文章可能年代过于久远,所以有些代码会报错,然后我自己稍微修改了一下,增加了一个getContentAll ...

  10. IIC通讯协议(非原创,转载他人,用于学习)

    I2C协议:1.空闲状态 2.开始信号 3.停止信号 4.应答信号 5.数据的有效性 6.数据传输 IIC详解 1.I2C总线具有两根双向信号线,一根是数据线SDA,另一根是时钟线SCL 2.IIC总 ...