pandas中的数值计算及统计基础
import pandas as pd
import numpy as np df = pd.DataFrame({
'key1': [4, 5, 3, np.nan, 2],
'key2': [1, 2, np.nan, 4, 5],
'key3': [1, 2, 3, 'j', 'k']
}, index=['a', 'b', 'c', 'd', 'e'])
print(df)
print(df['key1'].dtype,df['key2'].dtype,df['key3'].dtype)
print('-------')
'''
key1 key2 key3
a 4.0 1.0 1
b 5.0 2.0 2
c 3.0 NaN 3
d NaN 4.0 j
e 2.0 5.0 k
float64 float64 object
-------
'''
# 计算每一列的均值 df.mean()
# 只统计数字列,默认忽略nan。
print(df.mean())
'''
key1 3.5
key2 3.0
dtype: float64
'''
# 不忽略nan值计算均值
# skipna默认为True,如果为False,有NaN的列统计结果仍为NaN
m3 = df.mean(skipna=False)
print(m3)
'''
key1 NaN
key2 NaN
dtype: float64
'''
# 计算单一列的均值
print('计算单一列的均值',df['key2'].mean())
'''
计算单一列的均值 3.0
''' df2 = pd.DataFrame({
'key1': [1, 3, 5],
'key2': [2, 4, 6],
'key3': [3, 5, 7]
}, index=['a', 'b', 'c'])
# print(df2)
# print('--------df2')
# 计算df2每一行的均值并将其结果添加到新的列
df2['mean'] = df2.mean(axis=1)
print(df2)
'''
key1 key2 key3 mean
a 1 2 3 2.0
b 3 4 5 4.0
c 5 6 7 6.0
''' # 统计非NaN值的数量 count()
print(df)
print('-'*6)
print(df.count())
'''
key1 key2 key3
a 4.0 1.0 1
b 5.0 2.0 2
c 3.0 NaN 3
d NaN 4.0 j
e 2.0 5.0 k
------
key1 4
key2 4
key3 5
dtype: int64
''' # 统计
print(df)
print('-' * 6)
print('df的最小值',df.min())
print('df的最大值',df.max())
print('df的key2列的最大值',df['key2'].max())
print('统计df的分位数,参数q确定位置',df.quantile(q=0.75))
print('对df求和',df.sum())
print('求df的中位数,median(),50%分位数',df.median())
print('求df的标准差,std()',df.std())
print('求df的方差,var()',df.var())
print('求skew样本的偏度,skew()',df.skew())
print('求kurt样本的峰度,kurt()',df.kurt())
print('df累计求和,cumsum()',df['key2'].cumsum())
print('df累计求积,cumprod()',df['key2'].cumprod())
print('求df的累计最大值,cummax()', df['key2'].cummax())
print('求df的累计最小值,cummin()', df['key2'].cummin())
'''
key1 key2 key3
a 4.0 1.0 1
b 5.0 2.0 2
c 3.0 NaN 3
d NaN 4.0 j
e 2.0 5.0 k
------
df的最小值 key1 2.0
key2 1.0
dtype: float64
df的最大值 key1 5.0
key2 5.0
dtype: float64
df的key2列的最大值 5.0
统计df的分位数,参数q确定位置 key1 4.25
key2 4.25
Name: 0.75, dtype: float64
对df求和 key1 14.0
key2 12.0
dtype: float64
求df的中位数,median(),50%分位数 key1 3.5
key2 3.0
dtype: float64
求df的标准差,std() key1 1.290994
key2 1.825742
dtype: float64
求df的方差,var() key1 1.666667
key2 3.333333
dtype: float64
求skew样本的偏度,skew() key1 0.0
key2 0.0
dtype: float64
求kurt样本的峰度,kurt() key1 -1.2
key2 -3.3
dtype: float64
df累计求和,cumsum() a 1.0
b 3.0
c NaN
d 7.0
e 12.0
Name: key2, dtype: float64
df累计求积,cumprod() a 1.0
b 2.0
c NaN
d 8.0
e 40.0
Name: key2, dtype: float64
求df的累计最大值,cummax() a 1.0
b 2.0
c NaN
d 4.0
e 5.0
Name: key2, dtype: float64
求df的累计最小值,cummin() a 1.0
b 1.0
c NaN
d 1.0
e 1.0
Name: key2, dtype: float64
''' # 唯一值 :unique()
s = pd.Series(list('kjdhsakjdhjfh'))
sq = s.unique()
print(s)
print(sq)
print('sq的类型:',type(sq))
print('对sq进行重新排序:',pd.Series(sq).sort_values())
'''
0 k
1 j
2 d
3 h
4 s
5 a
6 k
7 j
8 d
9 h
10 j
11 f
12 h
dtype: object
['k' 'j' 'd' 'h' 's' 'a' 'f']
sq的类型: <class 'numpy.ndarray'>
对sq进行重新排序: 5 a
2 d
6 f
3 h
1 j
0 k
4 s
dtype: object
'''
# 对某一列进行值的计数,只能对一列,不能对Dataframe
print(df['key2'].value_counts()) # 判断Dataframe中的每个元素是否都是在某个列表中
print(df)
df_isin = df.isin([1,3])
print(df_isin)
'''
key1 key2 key3
a 4.0 1.0 1
b 5.0 2.0 2
c 3.0 NaN 3
d NaN 4.0 j
e 2.0 5.0 k key1 key2 key3
a False True True
b False False False
c True False True
d False False False
e False False False
'''
pandas中的数值计算及统计基础的更多相关文章
- Pandas中DateFrame修改列名
Pandas中DateFrame修改列名 在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas ...
- pandas中的分组技术
目录 1 分组操作 1.1 按照列进行分组 1.2 按照字典进行分组 1.3 根据函数进行分组 1.4 按照list组合 1.5 按照索引级别进行分组 2 分组运算 2.1 agg 2 ...
- 数据分析面试题之Pandas中的groupby
昨天晚上,笔者有幸参加了一场面试,有一个环节就是现场编程!题目如下: 示例数据如下,求每名学生(ID)对应的成绩(score)最高的那门科目(class)与ID,用Python实现: 这个题目 ...
- python – 基于pandas中的列中的值从DataFrame中选择行
如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看 ...
- pandas中的空值处理
1.空值 1.1 有两种丢失数据: None: Python自带的数据类型 不能参与到任何计算中 np.nan: float类型 能参与计算,但结果总是nan # None+2 # 报错 # np.n ...
- Pandas中关于accessor的骚操作
来自:Python那些事 pandas中accessor功能很强大,可以将它理解为一种属性接口,通过它获得额外的方法. 下面用代码和实例理解一下: import pandas as pd pd.Ser ...
- 分位函数(四分位数)概念与pandas中的quantile函数
p分位函数(四分位数)概念与pandas中的quantile函数 函数原型 DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpola ...
- Python之Pandas中Series、DataFrame
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- Pandas中DataFrame修改列名
Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01- ...
随机推荐
- C#实现加简单的Http请求
通过.Net中的两个类 HttpWebRequest 类, HttpWebResponse 类来实现Http的请求,响应处理. 第一个小测试是请求百度首页( http://www.baidu.com ...
- MyBatis(国税)
一.MyBatis概要 1.1.ORM介绍 对象关系映射(Object Relational Mapping,简称ORM,或O/RM,或O/R mapping),用于实现面向对象编程语言里不同类型系统 ...
- ASP.NET Core配置环境变量和启动设置
在这一部分内容中,我们来讨论ASP.NET Core中的一个新功能:环境变量和启动设置,它将开发过程中的调试和测试变的更加简单.我们只需要简单的修改配置文件,就可以实现开发.预演.生产环境的切换. A ...
- Java使用for循环输出菱形
/** * This program would print out a diamond * @param row the row of diamond * @version 2018-7-23 * ...
- SQL Server 基本INSERT语句
1.基本INSERT语句,单行插入 如果没有列出列,则使一一对应. 2.多行插入 3.INSERT INTO ... SELECT 语句 要插入的语句是从其他表中查询出来的. 注意:数据类型得相同或者 ...
- canvas-star3
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- SQL Anywhere5.5: Metadata
http://dcx.sybase.com/1101/en/dbprogramming_en11/ianywhere-data-sqlanywhere-saconnection-getschem633 ...
- Jquery插件开发之图片放大镜效果(仿淘宝)
原网转载地址:http://www.cnblogs.com/hnvvv/archive/2011/11/19/2255197.html 需求:公司某个网站,需要实现图片预览效果,并能像淘宝一样实现局部 ...
- Ansible--原理
什么是Ansible Ansible是一种IT自动化运维工具,它可以配置系统,部署软件以及协调更高级的IT任务,例如持续部署或者是零停机滚动更新Ansible是新出现的自动化运维工具,基于Python ...
- selenium win7+selenium2.0+python环境搭建
win7+selenium2.0+python环境搭建 by:授客 QQ:1033553122 步骤1:下载python 担心最新版的支持不太好,这里我下载的是python 2.7(selenium之 ...