剑指offer:变态跳台阶
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
思路
- 首先想到的解决方案是根据普通跳台阶题目改编,因为可以跳任意级,所以要加上前面台阶的所有可能,最后再加上可以一步跳上最后一阶的可能。
public class Solution {
public int JumpFloorII(int target) {
if (target == 1)
return 1;
if (target == 2)
return 2;
// sum用于保存前面所有台阶次数的和
int sum = 3;
int total = 0;
for (int i=3; i<=target; i++){
// +1 的意思就是一步就跳上来
total = sum + 1;
sum += total;
}
return total;
}
}
- 更进一步我们可以推导出该问题的通项公式
关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:
f(1) = 1
f(2) = f(2-1) + f(2-2) //f(2-2) 表示2阶一次跳2阶的次数。
f(3) = f(3-1) + f(3-2) + f(3-3)
…
f(n) = f(n-1) + f(n-2) + f(n-3) + … + f(n-(n-1)) + f(n-n)说明:
1)这里的f(n) 代表的是n个台阶有一次1,2,…n阶的 跳法数。
2)n = 1时,只有1种跳法,f(1) = 1
3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)
因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
5) n = n时,会有n中跳的方式,1阶、2阶…n阶,得出结论:
f(n) = f(n-1)+f(n-2)+…+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + … + f(n-1)6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + … + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + … + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + … + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)7) 得出最终结论,在n阶台阶,一次有1、2、…n阶的跳的方式时,总得跳法为:
| 1 ,(n=0 )
f(n) = | 1 ,(n=1 )
| 2*f(n-1),(n>=2)
所以可以写出如下代码:
public class Solution {
public int JumpFloorII(int target) {
if (target <= 0) {
return -1;
} else if (target == 1) {
return 1;
} else {
return 2 * JumpFloorII(target - 1);
}
}
}
3, 当然我们拒绝递归调用,因为递归会造成很多重复计算或是内存溢出风险
class Solution {
public:
int jumpFloorII(int number) {
int jumpFlo=1;
while(--number)
{
jumpFlo*=2;
}
return jumpFlo;
}
};
- 还有什么地方可以优化呢? 乘法是不是还可以用二进制位移操作优化呢!
public class Solution {
public int JumpFloorII(int target) {
if(target<=0)
return 0;
return 1<<(target-1);
}
}
剑指offer:变态跳台阶的更多相关文章
- (原)剑指offer变态跳台阶
变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析一下明天是个斐波那契 ...
- 剑指Offer 变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 其实就是斐波那契数列问题. 假设f(n)是n个台阶跳的次数. f(1) = ...
- 剑指offer——变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 问题分析 由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳 ...
- 用js刷剑指offer(变态跳台阶)
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 牛客网链接 思路 假设青蛙跳上一个n级的台阶总共有f(n)种跳法. 现在青蛙从第n个台阶 ...
- 《剑指offer》 跳台阶
本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...
- 剑指offer:跳台阶
目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). ...
- 剑指offer例题——跳台阶、变态跳台阶
题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...
- 牛客网——剑指offer(跳台阶以及变态跳台阶_java实现)
首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这 ...
- 剑指offer:跳台阶问题
基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...
- Go语言实现:【剑指offer】跳台阶
该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 1阶:共1种跳法: 2阶 ...
随机推荐
- JAVA中MAP转LIST
@Test public void testMap2List() throws Exception{ Map<String, String> map = new HashMap&l ...
- hadoop系列 第三坑: Task process exit with nonzero status of 137
跑MR的时候抛出异常: java.lang.Throwable: Child Error at org.apache.hadoop.mapred.TaskRunner.run(TaskRunner.j ...
- one_code=soup.find('a',href=re.compile(r"ill")) NameError: name 're' is not defined
啊啊啊啊我又来了,真的是万事开头难啊,一个问题刚解决,又来了一个问题..依旧跟着视频教学,说“re"这里按Ctrl+e导入正则表达式,可我弄了半天也没有反应..以至于最后的运行结果就是这样. ...
- c++11の异步方法 及线程间通信
1. std::promise 可以用来在线程间提供数据传递. std::future = std::promise.get_future(). 线程中可以对promise赋值std::promise ...
- Cocos2d-x CCControlPotentiometer之圆形音量button及特效
1. 圆形音量button 事实上作者的本意应该是叫做"电位计button".可是我觉得它和我们的圆形音量button非常像,所以就这么叫它吧~先看效果: 好了,不多解释,本篇到此 ...
- mvn 的 provided 以及 test等等 还有git团队开发技巧
mvn 的 provided 以及 test等等 还有git团队开发技巧
- Actor模型和CSP模型的区别
引用至:http://www.jdon.com/concurrent/actor-csp.html Akka/Erlang的actor模型与Go语言的协程Goroutine与通道Channel代表的C ...
- 手把手教你Chrome浏览器安装Postman(含下载云盘链接)(转)
文章转自http://www.ljwit.com/archives/php/278.html 说明: Postman不多介绍,是一款功能强大的网页调试与发送网页HTTP请求的Chrome插件.本文主要 ...
- nginx做负载均衡和tomcat简单集群
Nginx做负载均衡和TOMCAT简单集群 1.下载安装nginx及其依赖包 ...
- eclipse打断点的调试
对于程序员来说,最重要的技能之一其实是在发现问题的时候,定位问题,然后才能解决问题. 发现问题的能力十分的重要.而debug的水平就是基础. 打断点之后,操作相应的步骤,然后eclipse会跳转到相应 ...