DEEPCODER: LEARNING TO WRITE PROGRAMS

Basic Information

  • Authors: Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, Daniel Tarlow
  • Publication: ICLR'17
  • Description: Generate code based on input-output examples via neural network techniques

INDUCTIVE PROGRAM SYNTHESIS (IPS)

The Inductive Program Synthesis (IPS) problem is the following: given input-output examples, produce a program that has behavior consistent with the examples.

Building an IPS system requires solving two problems:

  • Search problem: to find consistent programs we need to search over a suitable set of possible programs. We need to define the set
    (i.e., the program space) and search procedure.
  • Ranking problem: if there are multiple programs consistent with the input-output examples, which one do we return?

Domain Specific Languages (DSLs)

  • DSLs are programming languages that are suitable for a
    specialized domain but are more restrictive than full-featured programming languages.
  • Restricted DSLs can also enable more efficient special-purpose search algorithms.
  • The choice of DSL also affects the difficulty of the ranking problem.

Search Techniques

Technique for searching for programs consistent with input-output examples.

  • Special-purpose algorithm
  • Satisfiability Modulo Theories (SMT) solving

Ranking

LEARNING INDUCTIVE PROGRAM SYNTHESIS (LIPS)

The components of LIPS are:

  1. a DSL specification,

    An attribute function A that maps programs P of the DSL to finite attribute vectors a = A(P). (Attribute vectors of different programs need not have equal length.) Attributes serve as the link between the machine learning and the search component of LIPS: the machine learning model predicts a distribution q(a | E), where E is the set of input-output examples, and the search procedure aims to search over programs P as ordered by q(A(P) | E). Thus an attribute is useful if it is both predictable from input-output examples, and if conditioning on its value significantly reduces the effective size of the search space.

    Possible attributes are the (perhaps position-dependent) presence or absence of high-level functions (e.g., does the program contain or end in a call to SORT). Other possible attributes include control
    flow templates (e.g., the number of loops and conditionals).

  2. a data-generation procedure,

    Generate a dataset ((P(n), a(n), E(n)))Nn=1 of programs P(n) in the chosen DSL, their attributes a(n), and accompanying input-output examples E(n)).

  3. a machine learning model that maps from input-output examples to program attributes,

    Learn a distribution of attributes given input-output examples, q(a | E).

  4. a search procedure that searches program space in an order guided by the model from (3).

    Interface with an existing solver, using the predicted q(a | E) to guide the search.

DEEPCODER: Instantiation of LIPS

  1. DSL AND ATTRIBUTES
    A program in our DSL is a sequence of function calls, where the result of each call initializes a fresh variable that is either a
    singleton integer or an integer array. Functions can be applied to any of the inputs or previously computed (intermediate) variables. The output of the program is the return value of the last function
    call, i.e., the last variable. See Fig. 1 for an example program of length T = 4 in our DSL.
    Overall, our DSL contains the first-order functions HEAD, LAST, TAKE, DROP, ACCESS, MINIMUM, MAXIMUM, REVERSE, SORT, SUM, and the higher-order functions MAP, FILTER, COUNT, ZIPWITH, SCANL1.

  1. DATA GENERATION
  2. MACHINE LEARNING MODEL
    1. an encoder: a differentiable mapping from a set of M input-output examples generated by
      a single program to a latent real-valued vector, and
    2. a decoder: a differentiable mapping from the latent vector representing a set of M inputoutput
      examples to predictions of the ground truth program’s attributes.

  1. SEARCH

    1. Depth-first search (DFS)
    2. “Sort and add” enumeration
    3. Sketch
  2. TRAINING LOSS FUNCTION
    Negative cross entropy loss

Implementation

  1. Pure python 3 implementation of DeepCoder
  2. Re-implement DeepCoder
  3. DeepCoder-tensorflow

[ICLR'17] DEEPCODER: LEARNING TO WRITE PROGRAMS的更多相关文章

  1. 17、Learning and Transferring IDs Representation in E-commerce笔记

    一.摘要 电子商务场景:主要组成部分(用户ID.商品ID.产品ID.商店ID.品牌ID.类别ID等) 传统的编码两个缺陷:如onehot,(1)存在稀疏性问题,维度高(2)不能反映关系,以两个不同的i ...

  2. SysML——AI-Sys Spring 2019

    AI-Sys Syllabus Projects Grading AI-Sys Spring 2019 When: Mondays and Wednesdays from 9:30 to 11:00 ...

  3. [综述]Deep Compression/Acceleration深度压缩/加速/量化

    Survey Recent Advances in Efficient Computation of Deep Convolutional Neural Networks, [arxiv '18] A ...

  4. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  5. Machine Learning 方向读博的一些重要期刊及会议 && 读博第一次组会时博导的交代

    读博从报道那天算起到现在已经3个多月了,这段时间以来和博导总共见过两次面,寥寥数语的见面要我对剩下的几年读书生活没有了太多的期盼,有些事情一直想去做却总是打不起来精神,最后挣扎一下还是决定把和博导开学 ...

  6. 【Deep Learning Nanodegree Foundation笔记】第 0 课:课程计划

    第一周 机器学习的类型,以及何时使用机器学习 我们将首先简单介绍线性回归和机器学习.这将让你熟悉这些领域的常用术语,你需要了解的技术进展,并了解深度学习在更大的机器学习背景中的位置. 直播:线性回归 ...

  7. Github项目推荐-图神经网络(GNN)相关资源大列表

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方 ...

  8. 库、教程、论文实现,这是一份超全的PyTorch资源列表(Github 2.2K星)

    项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 P ...

  9. CNN结构:场景分割与Relation Network

    参考第一个回答:如何评价DeepMind最新提出的RelationNetWork 参考链接:Relation Network笔记  ,暂时还没有应用到场景中 LiFeifei阿姨的课程:CV与ML课程 ...

随机推荐

  1. mysql trigger

    转自:https://www.cnblogs.com/zyshi/p/6618839.html 阅读目录 什么是触发器 特点及作用 例子:创建触发器,记录表的增.删.改操作记录 弊端 什么是触发器 简 ...

  2. csrf 跨站请求伪造相关以及django的中间件

    django为用户实现防止跨站请求伪造的功能,通过中间件 django.middleware.csrf.CsrfViewMiddleware来完成. 1.django中常用的中间件? - proces ...

  3. js,css文件更新之后,浏览器端还有缓存,久久不能消除

    解决方案,每次更新之后修改下配置信息 /// <summary> /// VersionInfo 版本信息 /// </summary> public static class ...

  4. Vue 2.3、2.4 知识点小结

    2.3 style 多重值: <div :style="{ display: ['-webkit-box', '-ms-flexbox', 'flex'] }">< ...

  5. 最课程阶段大作业06:U度节能平台控制系统

    除了互联网项目,当今社会还有一个概念非常流行,那就是:物联网.什么是物联网?物联网是通过传感设备,按约定的协议,把任意物品与互联网相连接,进行信息交换和通信,以实现智能化识别.定位.跟踪.监控和管理的 ...

  6. Swagger Annotation 详解(建议收藏)

    转载:https://www.jianshu.com/p/b0b19368e4a8 在软件开发行业,管理文档是件头疼的事.不是文档难于撰写,而是文档难于维护,因为需求与代码会经常变动,尤其在采用敏捷软 ...

  7. ubuntu 配置 apt 使用代理

    ubuntu 配置 apt 使用代理 仅配置系统代理是无法使 apt 也使用代理的,我们需要给 apt 独立配置代理. 方法 ubuntu 官方说明 :https://help.ubuntu.com/ ...

  8. iOS https请求 NSURLSessionDataTask

    // //  YKSHttpsRequest.m //  YKShareSdkDemo // //  Created by qingyun on 22/05/2017. //  Copyright © ...

  9. angularjs自定义filter

    angular.Module API Overview Methods info([info]); provider(name, providerType); factory(name, provid ...

  10. increase the minSdkVersion to 26

    AGPBI: {"kind":"error","text":"Invoke-customs are only supported ...