Description:

有一个长度为n的数组{a1,a2,…,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。

Hint:

\(n \le 2*10^5\)

Solution:

主席树好题,回滚莫队板子题?

把坐标离散化

不同于维护\(size\),这里用线段树维护以一个区间所有数的最后出现位置的最小值

这样我们每次直接在以\(r\)为根的值域线段树上找最小的\(val<l\)的数

// luogu-judger-enable-o2
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int mxn=8e6+100,mxm=1e7+5;
int n,m,s,p,cnt,tot,a[mxn],b[mxn],rt[mxm],tr[mxm],ls[mxm],rs[mxn]; inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline int chkmax(int &x,int y) {if(x<y) x=y;}
inline int chkmin(int &x,int y) {if(x>y) x=y;} struct ed {
int to,nxt;
}t[mxn<<1]; void update(int las,int &p,int l,int r,int val,int pos)
{
if(!p) p=++cnt;
if(l==r) {tr[p]=val;return ;} int mid=(l+r)>>1;
if(pos<=mid) update(ls[las],ls[p],l,mid,val,pos),rs[p]=rs[las];
else update(rs[las],rs[p],mid+1,r,val,pos),ls[p]=ls[las];
tr[p]=min(tr[ls[p]],tr[rs[p]]);
} int query(int p,int l,int r,int pos)
{
if((p == 0) or (l==r)) return b[l];
int mid=(l+r)>>1;
if(tr[ls[p]]>=pos) return query(rs[p],mid+1,r,pos);
else return query(ls[p],l,mid,pos);
} int main()
{
n=read(); m=read(); int l,r; b[++tot]=0;
for(int i=1;i<=n;++i) a[i]=read(),b[++tot]=a[i],b[++tot]=a[i]+1;
sort(b+1,b+tot+1); s=unique(b+1,b+tot+1)-b-1;
for(int i=1;i<=n;++i) a[i]=lower_bound(b+1,b+s+1,a[i])-b;
for(int i=1;i<=n;++i) update(rt[i-1],rt[i],1,s,i,a[i]);
for(int i=1;i<=m;++i) {
l=read(); r=read();
printf("%d\n",query(rt[r],1,s,l));
}
return 0;
}

常数极大的回滚莫队:

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=5e5+5;
int n,m,L,R,sz,num,res,a[mxn],b[mxn],bl[mxn],ans[mxn],bac[mxn];
inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline int chkmax(int &x,int y) {if(x<y) x=y;}
inline int chkmin(int &x,int y) {if(x>y) x=y;} struct ed {
int to,nxt;
}t[mxn<<1]; struct Q {
int id,l,r;
}q[mxn]; int cmp(Q x,Q y) {
return bl[x.l]==bl[y.l]?x.r>y.r:bl[x.l]<bl[y.l];
} void md(int x) {
if(a[x]<=n) {
--bac[a[x]];
if(bac[a[x]]==0) chkmin(res,a[x]);
}
} void solve()
{
int l=1,r=0,z=1;
for(int i=1;i<=num;++i) {
L=(i-1)*sz; R=i*sz+1; res=n+1;
for(int j=0;j<=n;++j) bac[j]=0;
for(int j=1;j<=n;++j) if(a[j]<=n) ++bac[a[j]];
for(int j=0;j<=n;++j) if(!bac[j]) {res=j;break;}
l=-1,r=n+1; while(l<L-1) md(++l);
for(;bl[q[z].l]==i;++z) {
if(bl[q[z].l]==bl[q[z].r]) {
for(int k=q[z].l;k<=q[z].r;++k)
if(a[k]<=n) ++b[a[k]];
for(int k=0;k<=n;++k)
if(!b[k]) {ans[q[z].id]=k;break;}
for(int k=q[z].l;k<=q[z].r;++k)
if(a[k]<=n) --b[a[k]];
continue ;
}
while(r-1>q[z].r) md(--r); int las=res;
while(l<q[z].l-1) md(++l);
while(l>=L) {if(a[l]<=n) ++bac[a[l]]; --l;}
ans[q[z].id]=res; res=las;
}
}
} int main()
{
n=read(); m=read(); sz=sqrt(n); int l,r; a[0]=n+1;
for(int i=1;i<=n;++i)
a[i]=read(),bl[i]=(i-1)/sz+1,chkmax(num,bl[i]);
for(int i=1;i<=m;++i)
q[i].l=read(),q[i].r=read(),q[i].id=i;
sort(q+1,q+m+1,cmp); solve();
for(int i=1;i<=m;++i) printf("%d\n",ans[i]);
return 0;
}

[BZOJ3339]Rmq Problem / mex的更多相关文章

  1. 分块+莫队||BZOJ3339||BZOJ3585||Luogu4137||Rmq Problem / mex

    题面:P4137 Rmq Problem / mex 题解:先莫队排序一波,然后对权值进行分块,找出第一个没有填满的块,直接for一遍找答案. 除了bzoj3339以外,另外两道题Ai范围都是1e9. ...

  2. BZOJ3339&&3585 Rmq Problem&&mex

    BZOJ3339&&3585:Rmq Problem&&mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最 ...

  3. 【Luogu4137】Rmq Problem/mex (莫队)

    [Luogu4137]Rmq Problem/mex (莫队) 题面 洛谷 题解 裸的莫队 暴力跳\(ans\)就能\(AC\) 考虑复杂度有保证的做法 每次计算的时候把数字按照大小也分块 每次就枚举 ...

  4. P4137 Rmq Problem / mex (莫队)

    题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\): ...

  5. 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex

    题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...

  6. 洛谷 P4137 Rmq Problem /mex 解题报告

    P4137 Rmq Problem /mex 题意 给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\) 可以莫队然后 ...

  7. BZOJ 3339 && luogu4137 Rmq Problem / mex(莫队)

    P4137 Rmq Problem / mex 题目描述 有一个长度为n的数组{a1,a2,-,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. ...

  8. [bzoj3585] Rmq Problem / mex

    [bzoj3585] Rmq Problem / mex bzoj luogu 看上一篇博客吧,看完了这个也顺理成章会了( (没错这篇博客就是这么水) #include<cstdio> # ...

  9. [bzoj3339]Rmq Problem||[bzoj3585]mex_线段树

    Rmq Problem bzoj-3339||mex bzoj-3585 题目大意:给定一个长度为n的数列a,多次讯问区间l,r中最小的不属于集合{$A_l,A_{l+1}...A_r$}的非负整数. ...

随机推荐

  1. 论文阅读笔记二十二:End-to-End Instance Segmentation with Recurrent Attention(CVPR2017)

    论文源址:https://arxiv.org/abs/1605.09410 tensorflow 代码:https://github.com/renmengye/rec-attend-public 摘 ...

  2. Centos7上实现不同网段的服务器文件共享

    目的:实现不同网段的服务器实现文件共享 前提:服务器1可以和共享服务器互通,共享服务器和服务器2互通 拓扑如下: 思路: 一般文件共享有涉及windown系统的用samba,纯类centos系统就用n ...

  3. servlet获取多个同名参数

    String[] item = request.getParameterValues("参数名");

  4. tempalte模板

    tempalte模板层: 功能:为了更有逻辑的将数据库中的数据渲染到模板中: 模拟数据源: DB = [ {"hostname":"c1.com"," ...

  5. 全球免费公共 DNS 解析服务器 IP 地址列表推荐 (解决无法上网/加速/防劫持)

    除了宽带提供商的 DNS 以外,像阿里云.腾讯云.Google.百度.IBM.CNNIC 等一些有足够实力的大型互联网公司也非常慷慨地为公众提供了免费的 DNS 解析服务器.异次元这就搜集了全球范围内 ...

  6. ExceptionLess本地环境部署

    1.先去看看github上面本地流程说明 https://github.com/exceptionless/Exceptionless/wiki/Self-Hosting 比较总要的环境有 NET 4 ...

  7. WebClient 支持 gzip, deflate

    低调偷偷的下别人数据 发现下出来乱码- 用F12看看请求,原来人家是用了gzip压缩的- 试着自己加个Heading wc.Headers.Add("Accept-Encoding" ...

  8. HL7消息部分笔记

    1.关于HL7标准 HL7是HealthLevel7的缩写,主要用于医疗领域不同的系统.应用之间的信息传递.规范各个系统间的信息传递格式. 2.字段含义: Z信息段: Z信息段是指与HL7第二版标准其 ...

  9. CDOJ1927 爱吃瓜的伊卡洛斯(2) 【并查集】启发式合并+set

    伊卡洛斯很爱吃西瓜.一次,他来到一个西瓜摊旁,发现水果摊有N个西瓜,西瓜有红色.黄色.绿色.蓝色……等等数不清的颜色. 伊卡洛斯很想知道知道一些信息,便于老板交谈了起来. 当老板的话的第一个字符为”A ...

  10. maven安装和eclipse集成

    maven作为一个项目构建工具,在开发的过程中很受欢迎,可以帮助管理项目中的bao依赖问题,另外它的很多功能都极大的减少了开发的难度,下面来介绍maven的安装及与eclipse的集成. maven的 ...