Liblinear and Libsvm-rank训练数据的bash代码:

for j in  "amazon_mp3" "video_surveillance" "tablets" "mobilephone" "cameras" "TripAdvisor" "chunyu" "Treebank" "MovieReview" "yelp_review" "LargeMovie" "Electronics_5" "Health_and_Personal_Care_5" "Apps_for_Android_5" "Home_and_Kitchen_5"
do
echo -e "SVC bias $j "
./train -s 3 -c 0.03125 -v 5 -B 1 -C $j.train
./predict $j.test $j.train.model SVC1.$j.out.txt
echo -e "SVOR bias $j "
./train -s 8 -c 0.03125 -v 5 -B 1 -m 2 -C $j.train
./predict $j.test $j.train.model SVOR1.$j.out.txt
echo -e "REDSVM bias $j "
./train -s 8 -c 0.03125 -v 5 -B 1 -m 1 -C $j.train
./predict $j.test $j.train.model REDSVM1.$j.out.txt
echo -e "SVMOP bias $j "
./train -s 10 -c 0.03125 -v 5 -B 1 -m 2 -C $j.train
./predict $j.test $j.train.model SVMOP1.$j.out.txt
echo -e "NPSVOR bias $j "
./train -s 9 -c 0.03125 -v 5 -B 1 -C $j.train
./predict $j.test $j.train.model NPSVOR1.$j.out.txt
echo -e "SVR bias $j "
./train -s 13 -c 0.03125 -p 0.1 -B 1 -v 5 -C $j.train
./predict $j.test $j.train.model SVR1.$j.out.txt
done data=("amazon_mp3" "video_surveillance" "tablets" "mobilephone" "cameras" "TripAdvisor" "chunyu" "Treebank" "MovieReview" "yelp_review" "LargeMovie" "Electronics_5" "Health_and_Personal_Care_5" "Apps_for_Android_5" "Home_and_Kitchen_5")
redsvm=(0.5 1 0.5 0.5 1 0.5 2 0.25 8 0.25 0.25 1 0.5 1 1)
svor=(1 1 0.5 0.5 1 0.5 2 2 4 0.25 0.125 1 0.25 1 1)
for k in {0..14}
do
j=${data[$k]}
cr=${redsvm[$k]}
cs=${svor[$k]}
echo -e "SVOR bias $j "
./svm-train -s 6 -t 0 -c $cs $j.train
./svm-predict $j.test $j.train.model SVOR1.$j.out.txt
echo -e "REDSVM bias $j "
./svm-train -s 5 -t 0 -c $cr $j.train
./svm-predict $j.test $j.train.model REDSVM1.$j.out.txt
done

Liblinear and Libsvm-rank训练数据的bash代码的更多相关文章

  1. libsvm的安装,数据格式,常见错误,grid.py参数选择,c-SVC过程,libsvm参数解释,svm训练数据,libsvm的使用详解,SVM核函数的选择

    直接conda install libsvm安装的不完整,缺几个.py文件. 第一种安装方法: 下载:http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm. ...

  2. 代码备份:处理 SUN397 的代码,将其分为 80% 训练数据 以及 20% 的测试数据

    处理SUN397 的代码,将其分为80% 训练数据以及20% 的测试数据 2016-07-27 1 %% Code for Process SUN397 Scene Classification 2 ...

  3. python numpy 三行代码打乱训练数据

    今天发现一个用 numpy 随机化数组的技巧. 需求 我有两个数组( ndarray ):train_datasets 和 train_labels.其中,train_datasets 的每一行和 t ...

  4. tesnorflow实现N个epoch训练数据读取的办法

    https://blog.csdn.net/lujiandong1/article/details/53991373 方式一:不显示设置读取N个epoch的数据,而是使用循环,每次从训练的文件中随机读 ...

  5. tensorflow读取训练数据方法

    1. 预加载数据 Preloaded data # coding: utf-8 import tensorflow as tf # 设计Graph x1 = tf.constant([2, 3, 4] ...

  6. caffe 中如何打乱训练数据

    第一: 可以选择在将数据转换成lmdb格式时进行打乱: 设置参数--shuffle=1:(表示打乱训练数据) 默认为0,表示忽略,不打乱. 打乱的目的有两个:防止出现过分有规律的数据,导致过拟合或者不 ...

  7. pytorch:EDSR 生成训练数据的方法

    Pytorch:EDSR 生成训练数据的方法 引言 Winter is coming 正文 pytorch提供的DataLoader 是用来包装你的数据的工具. 所以你要将自己的 (numpy arr ...

  8. 迁移学习算法之TrAdaBoost ——本质上是在用不同分布的训练数据,训练出一个分类器

    迁移学习算法之TrAdaBoost from: https://blog.csdn.net/Augster/article/details/53039489 TradaBoost算法由来已久,具体算法 ...

  9. Tensorflow 从文件中载入训练数据

    本节包含: 用纯文本文件准备训练数据 加载文件中的训练数据 一.用纯文本文件准备训练数据 1.数据的数字化 比如,“是” —— “1”,“否” —— “0” “优”,“中”,“差” —— 1 2 3  ...

随机推荐

  1. Spring中IOC和AOP的详细解释(转)

    原文链接:Spring中IOC和AOP的详细解释 我们是在使用Spring框架的过程中,其实就是为了使用IOC,依赖注入,和AOP,面向切面编程,这两个是Spring的灵魂. 主要用到的设计模式有工厂 ...

  2. [js]js设计模式小结

    js设计模式小结 工厂模式/构造函数--减少重复 - 创建对象有new - 自动创建obj,this赋值 - 无return 原型链模式 - 进一步去重 类是函数数据类型,每个函数都有prototyp ...

  3. DAX/PowerBI系列 - 累计总计(Cumulative Total)

    DAX/PowerBI系列 - 累计总计(Cumulative Total) 2017/07/23 更新:B列公式(见最后) 难度: ★★☆☆☆(2星) 适用: ★★☆☆☆(2星) 概况: 这个模式普 ...

  4. 【UML】-NO.44.EBook.5.UML.1.004-【UML 大战需求分析】- 顺序图(Sequence Diagram)

    1.0.0 Summary Tittle:[UML]-NO.44.EBook.1.UML.1.004-[UML 大战需求分析]- 顺序图(Sequence Diagram) Style:DesignP ...

  5. HDU 2874 Connections between cities(LCA Tarjan)

    Connections between cities [题目链接]Connections between cities [题目类型]LCA Tarjan &题意: 输入一个森林,总节点不超过N ...

  6. 微信OpenID获取

    用户要求在微信端登录一次后,以后不需要再登录.  我的系统是单独的一个网站. 使用MVC的记住密码功能, 如果用户重启,就还是要输入密码,所以需要有一个唯一不变的用来标示用户的ID.  OpenID就 ...

  7. Vue单元测试Karma+Mocha

    Vue单元测试Karma+Mocha Karma是一个基于Node.js的JavaScript测试执行过程管理工具(Test Runner).该工具在Vue中的主要作用是将项目运行在各种主流Web浏览 ...

  8. PostgreSQL在Update时使用Substring函数截取字符串并且加上CASE WHEN THEN条件判断

    --更新 UPDATE wp_order_detail SET layout_type = ( SELECT CASE THEN ) ELSE '' END FROM wp_catalog_size ...

  9. Qt做发布版,解决声音和图片、中文字体乱码问题(需要在main里写上QApplication::addLibraryPath("./plugins")才能加载图片,有图片,很清楚)

    前些天做Qt发布版,发现居然不显示图片,后来才发现原来还有图片的库没加!找找吧,去qt的安装包,我装在了F盘,在F盘F:/QT/qt/plugins,找到了plugins,这里面有个 imagefor ...

  10. No Directionality widget found

    The problem is not that you have not wrapped your widgets into MaterialApp. As the documentation say ...