r"""JSON (JavaScript Object Notation) <http://json.org> is a subset of
JavaScript syntax (ECMA-262 3rd edition) used as a lightweight data
interchange format. :mod:`json` exposes an API familiar to users of the standard library
:mod:`marshal` and :mod:`pickle` modules. It is derived from a
version of the externally maintained simplejson library. Encoding basic Python object hierarchies:: >>> import json
>>> json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}])
'["foo", {"bar": ["baz", null, 1.0, 2]}]'
>>> print(json.dumps("\"foo\bar"))
"\"foo\bar"
>>> print(json.dumps('\u1234'))
"\u1234"
>>> print(json.dumps('\\'))
"\\"
>>> print(json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True))
{"a": 0, "b": 0, "c": 0}
>>> from io import StringIO
>>> io = StringIO()
>>> json.dump(['streaming API'], io)
>>> io.getvalue()
'["streaming API"]' Compact encoding:: >>> import json
>>> from collections import OrderedDict
>>> mydict = OrderedDict([('4', 5), ('6', 7)])
>>> json.dumps([1,2,3,mydict], separators=(',', ':'))
'[1,2,3,{"4":5,"6":7}]' Pretty printing:: >>> import json
>>> print(json.dumps({'4': 5, '6': 7}, sort_keys=True, indent=4))
{
"4": 5,
"6": 7
} Decoding JSON:: >>> import json
>>> obj = ['foo', {'bar': ['baz', None, 1.0, 2]}]
>>> json.loads('["foo", {"bar":["baz", null, 1.0, 2]}]') == obj
True
>>> json.loads('"\\"foo\\bar"') == '"foo\x08ar'
True
>>> from io import StringIO
>>> io = StringIO('["streaming API"]')
>>> json.load(io)[0] == 'streaming API'
True Specializing JSON object decoding:: >>> import json
>>> def as_complex(dct):
... if '__complex__' in dct:
... return complex(dct['real'], dct['imag'])
... return dct
...
>>> json.loads('{"__complex__": true, "real": 1, "imag": 2}',
... object_hook=as_complex)
(1+2j)
>>> from decimal import Decimal
>>> json.loads('1.1', parse_float=Decimal) == Decimal('1.1')
True Specializing JSON object encoding:: >>> import json
>>> def encode_complex(obj):
... if isinstance(obj, complex):
... return [obj.real, obj.imag]
... raise TypeError(repr(obj) + " is not JSON serializable")
...
>>> json.dumps(2 + 1j, default=encode_complex)
'[2.0, 1.0]'
>>> json.JSONEncoder(default=encode_complex).encode(2 + 1j)
'[2.0, 1.0]'
>>> ''.join(json.JSONEncoder(default=encode_complex).iterencode(2 + 1j))
'[2.0, 1.0]' Using json.tool from the shell to validate and pretty-print:: $ echo '{"json":"obj"}' | python -m json.tool
{
"json": "obj"
}
$ echo '{ 1.2:3.4}' | python -m json.tool
Expecting property name enclosed in double quotes: line 1 column 3 (char 2)
"""
__version__ = '2.0.9'
__all__ = [
'dump', 'dumps', 'load', 'loads',
'JSONDecoder', 'JSONDecodeError', 'JSONEncoder',
] __author__ = 'Bob Ippolito <bob@redivi.com>' from .decoder import JSONDecoder, JSONDecodeError
from .encoder import JSONEncoder
import codecs _default_encoder = JSONEncoder(
skipkeys=False,
ensure_ascii=True,
check_circular=True,
allow_nan=True,
indent=None,
separators=None,
default=None,
) def dump(obj, fp, *, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None,
default=None, sort_keys=False, **kw):
"""Serialize ``obj`` as a JSON formatted stream to ``fp`` (a
``.write()``-supporting file-like object). If ``skipkeys`` is true then ``dict`` keys that are not basic types
(``str``, ``int``, ``float``, ``bool``, ``None``) will be skipped
instead of raising a ``TypeError``. If ``ensure_ascii`` is false, then the strings written to ``fp`` can
contain non-ASCII characters if they appear in strings contained in
``obj``. Otherwise, all such characters are escaped in JSON strings. If ``check_circular`` is false, then the circular reference check
for container types will be skipped and a circular reference will
result in an ``OverflowError`` (or worse). If ``allow_nan`` is false, then it will be a ``ValueError`` to
serialize out of range ``float`` values (``nan``, ``inf``, ``-inf``)
in strict compliance of the JSON specification, instead of using the
JavaScript equivalents (``NaN``, ``Infinity``, ``-Infinity``). If ``indent`` is a non-negative integer, then JSON array elements and
object members will be pretty-printed with that indent level. An indent
level of 0 will only insert newlines. ``None`` is the most compact
representation. If specified, ``separators`` should be an ``(item_separator, key_separator)``
tuple. The default is ``(', ', ': ')`` if *indent* is ``None`` and
``(',', ': ')`` otherwise. To get the most compact JSON representation,
you should specify ``(',', ':')`` to eliminate whitespace. ``default(obj)`` is a function that should return a serializable version
of obj or raise TypeError. The default simply raises TypeError. If *sort_keys* is true (default: ``False``), then the output of
dictionaries will be sorted by key. To use a custom ``JSONEncoder`` subclass (e.g. one that overrides the
``.default()`` method to serialize additional types), specify it with
the ``cls`` kwarg; otherwise ``JSONEncoder`` is used. """
# cached encoder
if (not skipkeys and ensure_ascii and
check_circular and allow_nan and
cls is None and indent is None and separators is None and
default is None and not sort_keys and not kw):
iterable = _default_encoder.iterencode(obj)
else:
if cls is None:
cls = JSONEncoder
iterable = cls(skipkeys=skipkeys, ensure_ascii=ensure_ascii,
check_circular=check_circular, allow_nan=allow_nan, indent=indent,
separators=separators,
default=default, sort_keys=sort_keys, **kw).iterencode(obj)
# could accelerate with writelines in some versions of Python, at
# a debuggability cost
for chunk in iterable:
fp.write(chunk) def dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None,
default=None, sort_keys=False, **kw):
"""Serialize ``obj`` to a JSON formatted ``str``. If ``skipkeys`` is true then ``dict`` keys that are not basic types
(``str``, ``int``, ``float``, ``bool``, ``None``) will be skipped
instead of raising a ``TypeError``. If ``ensure_ascii`` is false, then the return value can contain non-ASCII
characters if they appear in strings contained in ``obj``. Otherwise, all
such characters are escaped in JSON strings. If ``check_circular`` is false, then the circular reference check
for container types will be skipped and a circular reference will
result in an ``OverflowError`` (or worse). If ``allow_nan`` is false, then it will be a ``ValueError`` to
serialize out of range ``float`` values (``nan``, ``inf``, ``-inf``) in
strict compliance of the JSON specification, instead of using the
JavaScript equivalents (``NaN``, ``Infinity``, ``-Infinity``). If ``indent`` is a non-negative integer, then JSON array elements and
object members will be pretty-printed with that indent level. An indent
level of 0 will only insert newlines. ``None`` is the most compact
representation. If specified, ``separators`` should be an ``(item_separator, key_separator)``
tuple. The default is ``(', ', ': ')`` if *indent* is ``None`` and
``(',', ': ')`` otherwise. To get the most compact JSON representation,
you should specify ``(',', ':')`` to eliminate whitespace. ``default(obj)`` is a function that should return a serializable version
of obj or raise TypeError. The default simply raises TypeError. If *sort_keys* is true (default: ``False``), then the output of
dictionaries will be sorted by key. To use a custom ``JSONEncoder`` subclass (e.g. one that overrides the
``.default()`` method to serialize additional types), specify it with
the ``cls`` kwarg; otherwise ``JSONEncoder`` is used. """
# cached encoder
if (not skipkeys and ensure_ascii and
check_circular and allow_nan and
cls is None and indent is None and separators is None and
default is None and not sort_keys and not kw):
return _default_encoder.encode(obj)
if cls is None:
cls = JSONEncoder
return cls(
skipkeys=skipkeys, ensure_ascii=ensure_ascii,
check_circular=check_circular, allow_nan=allow_nan, indent=indent,
separators=separators, default=default, sort_keys=sort_keys,
**kw).encode(obj) _default_decoder = JSONDecoder(object_hook=None, object_pairs_hook=None) def detect_encoding(b):
bstartswith = b.startswith
if bstartswith((codecs.BOM_UTF32_BE, codecs.BOM_UTF32_LE)):
return 'utf-32'
if bstartswith((codecs.BOM_UTF16_BE, codecs.BOM_UTF16_LE)):
return 'utf-16'
if bstartswith(codecs.BOM_UTF8):
return 'utf-8-sig' if len(b) >= 4:
if not b[0]:
# 00 00 -- -- - utf-32-be
# 00 XX -- -- - utf-16-be
return 'utf-16-be' if b[1] else 'utf-32-be'
if not b[1]:
# XX 00 00 00 - utf-32-le
# XX 00 00 XX - utf-16-le
# XX 00 XX -- - utf-16-le
return 'utf-16-le' if b[2] or b[3] else 'utf-32-le'
elif len(b) == 2:
if not b[0]:
# 00 XX - utf-16-be
return 'utf-16-be'
if not b[1]:
# XX 00 - utf-16-le
return 'utf-16-le'
# default
return 'utf-8' def load(fp, *, cls=None, object_hook=None, parse_float=None,
parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):
"""Deserialize ``fp`` (a ``.read()``-supporting file-like object containing
a JSON document) to a Python object. ``object_hook`` is an optional function that will be called with the
result of any object literal decode (a ``dict``). The return value of
``object_hook`` will be used instead of the ``dict``. This feature
can be used to implement custom decoders (e.g. JSON-RPC class hinting). ``object_pairs_hook`` is an optional function that will be called with the
result of any object literal decoded with an ordered list of pairs. The
return value of ``object_pairs_hook`` will be used instead of the ``dict``.
This feature can be used to implement custom decoders that rely on the
order that the key and value pairs are decoded (for example,
collections.OrderedDict will remember the order of insertion). If
``object_hook`` is also defined, the ``object_pairs_hook`` takes priority. To use a custom ``JSONDecoder`` subclass, specify it with the ``cls``
kwarg; otherwise ``JSONDecoder`` is used. """
return loads(fp.read(),
cls=cls, object_hook=object_hook,
parse_float=parse_float, parse_int=parse_int,
parse_constant=parse_constant, object_pairs_hook=object_pairs_hook, **kw) def loads(s, *, encoding=None, cls=None, object_hook=None, parse_float=None,
parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):
"""Deserialize ``s`` (a ``str``, ``bytes`` or ``bytearray`` instance
containing a JSON document) to a Python object. ``object_hook`` is an optional function that will be called with the
result of any object literal decode (a ``dict``). The return value of
``object_hook`` will be used instead of the ``dict``. This feature
can be used to implement custom decoders (e.g. JSON-RPC class hinting). ``object_pairs_hook`` is an optional function that will be called with the
result of any object literal decoded with an ordered list of pairs. The
return value of ``object_pairs_hook`` will be used instead of the ``dict``.
This feature can be used to implement custom decoders that rely on the
order that the key and value pairs are decoded (for example,
collections.OrderedDict will remember the order of insertion). If
``object_hook`` is also defined, the ``object_pairs_hook`` takes priority. ``parse_float``, if specified, will be called with the string
of every JSON float to be decoded. By default this is equivalent to
float(num_str). This can be used to use another datatype or parser
for JSON floats (e.g. decimal.Decimal). ``parse_int``, if specified, will be called with the string
of every JSON int to be decoded. By default this is equivalent to
int(num_str). This can be used to use another datatype or parser
for JSON integers (e.g. float). ``parse_constant``, if specified, will be called with one of the
following strings: -Infinity, Infinity, NaN.
This can be used to raise an exception if invalid JSON numbers
are encountered. To use a custom ``JSONDecoder`` subclass, specify it with the ``cls``
kwarg; otherwise ``JSONDecoder`` is used. The ``encoding`` argument is ignored and deprecated. """
if isinstance(s, str):
if s.startswith('\ufeff'):
raise JSONDecodeError("Unexpected UTF-8 BOM (decode using utf-8-sig)",
s, 0)
else:
if not isinstance(s, (bytes, bytearray)):
raise TypeError('the JSON object must be str, bytes or bytearray, '
'not {!r}'.format(s.__class__.__name__))
s = s.decode(detect_encoding(s), 'surrogatepass') if (cls is None and object_hook is None and
parse_int is None and parse_float is None and
parse_constant is None and object_pairs_hook is None and not kw):
return _default_decoder.decode(s)
if cls is None:
cls = JSONDecoder
if object_hook is not None:
kw['object_hook'] = object_hook
if object_pairs_hook is not None:
kw['object_pairs_hook'] = object_pairs_hook
if parse_float is not None:
kw['parse_float'] = parse_float
if parse_int is not None:
kw['parse_int'] = parse_int
if parse_constant is not None:
kw['parse_constant'] = parse_constant
return cls(**kw).decode(s)

python:json

python模块:json的更多相关文章

  1. Python模块——json

    简介 json全名是JavaScript Object Notation(即:Javascript对象标记).它是JavaScript的子集,JSON是轻量级的文本数据交换格式.前端和后端进行数据交互 ...

  2. Python模块(json)

    json json模块,用来处理json风格的数据 一.json的数据格式 json是javascripts的标准格式,json的格式是由若干个 键/值(key,values) 对的集合,该集合可以理 ...

  3. 潭州课堂25班:Ph201805201 python 模块json,os 第六课 (课堂笔记)

    json 模块 import json data = { 'name':'aa', 'age':18, 'lis':[1,3,4], 'tupe':(4,5,6), 'None':None } j = ...

  4. python模块-json、pickle、shelve

    json模块 用于文件处理时其他数据类型与js字符串之间转换.在将其他数据类型转换为js字符串时(dump方法),首先将前者内部所有的单引号变为双引号,再整体加上引号(单或双)转换为js字符串:再使用 ...

  5. python模块--json \ pickle \ shelve \ XML模块

    一.json模块 之前学习过的eval内置方法可以将一个字符串转成一个python对象,不过eval方法时有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,e ...

  6. day19 python模块 json模块 pickle模块

    day19 python   一.序列化模块     序列类型: 列表 字符串 元组 bytes     序列化: 特指字符串和bytes, 就是把其他的数据类型转化成序列的数据类型的过程 dic = ...

  7. python 模块-json

    1.JSON(Javascript Object Notation) 是一种轻量级的数据交换格式.易于人阅读和编写.同时也易于机器解析和生成.它基于JavaScript Programming Lan ...

  8. python 模块之-json

    python 模块json import json x="[null,true,false,1]" print(json.loads(x))   #---------------- ...

  9. python模块(json和pickle模块)

    json和pickle模块,两个都是用于序列化的模块 • json模块,用于字符串与python数据类型之间的转换 • pickle模块,用于python特有类型与python数据类型之间的转换 两个 ...

  10. python模块time&datetime&json & picle&14.logging等

    本节大纲: 模块介绍 time &datetime模块 random os sys shutil json & picle shelve xml处理 yaml处理 configpars ...

随机推荐

  1. C#将对象序列化成JSON字符串

    C#将对象序列化成JSON字符串 public string GetJsonString() { List<Product> products = new List<Product& ...

  2. Excel清除无用数据行和数据列

    http://jingyan.baidu.com/article/6525d4b13ae608ac7c2e9478.html ctrl+shift+↓ ctrl+- ctrl+shift+→ ctrl ...

  3. Celery 异步任务 , 定时任务 , 周期任务 的芹菜

    1.什么是Celery?Celery 是芹菜Celery 是基于Python实现的模块, 用于执行异步定时周期任务的其结构的组成是由    1.用户任务 app    2.管道 broker 用于存储 ...

  4. hive的使用

    1,前言 书接上回,接着对上一个hive安装后环境下的hive使用.

  5. spring 入门demo

    相关资源 官网地址:http://projects.spring.io/spring-boot/ 创建maven项目 勾选箭头处,创建一个简单的项目  填写groupId和artifactId,点击确 ...

  6. 关于java字节码框架ASM的学习

      一.什么是ASM ASM是一个java字节码操纵框架,它能被用来动态生成类或者增强既有类的功能.ASM 可以直接产生二进制 class 文件,也可以在类被加载入 Java 虚拟机之前动态改变类行为 ...

  7. 关于six.with_metaclass(ABCMeta, object)的理解

    在学习Python过程中,看到了生成虚基类的方式, class PeopleBase(six.with_metaclass(ABCMeta, object)): @abstractmethod def ...

  8. ODPS SQL <for 数据定义语言 DDL>

    数据定义语言:(DDL) 建表语句: CREATE TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment ...

  9. jquery中的 deferred之 deferred对象 (一)

    案例: var def=$.Deferred(); console.log(def);//答案见 图1 图1: deferred就是一个有这些方法的对象. 看源码分析: Deferred: funct ...

  10. 《深入理解JAVA虚拟机》----------第二章 JAVA内存区域与内存溢出异常,笔记(下)

    2. HotSpot虚拟机对象探秘 2.1 对象的创建 虚拟机遇到一条New指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载.解析和初 ...