\(Lucas\)定理:

\(C^x_y≡C^{x/p}_{y/p}*C^{x\%p}_{y\%p} ~~(mod~p)\)

证明不会2333

void pre(){
A[0]=A[1]=B[0]=B[1]=1;
for(int i=2;i<MOD;i++){B[i]=-B[MOD%i]*(MOD/i)%MOD;}
for(int i=2;i<MOD;i++)
A[i]=A[i-1]*i%MOD,
B[i]=B[i-1]*B[i]%MOD;
}
LL C(int n,int m){
if(m>n)return 0;m=min(m,n-m);
return 1ll*A[n]*B[n-m]%MOD*B[m]%MOD;
}
LL Lucas(int n,int m){
if(m==0)return 1;
return Lucas(n/p,m/p)*C(n%p,m%p);
}

【总结】 Lucas定理的更多相关文章

  1. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  2. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  3. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  4. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  5. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  6. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  7. 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  8. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  9. HDU 4349 Xiao Ming's Hope lucas定理

    Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting nu ...

  10. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

随机推荐

  1. CF835F Roads in the Kingdom/UOJ126 NOI2013 快餐店 树的直径

    传送门--CF 传送门--UOJ 题目要求基环树删掉环上的一条边得到的树的直径的最小值. 如果直接考虑删哪条边最优似乎不太可做,于是考虑另一种想法:枚举删掉的边并快速地求出当前的直径. 对于环上的点, ...

  2. libgdx学习记录26——Polygon多边形碰撞检测

    libgdx中Math封装了Polygon这个类,它是由多个定点进行描述实现的,在进行物体间的碰撞时,物体轮廓有时候是不规则的,这时候可以用一个多边形勾勒出其大概的轮廓,对其进行模拟. Polygon ...

  3. python第二周

    第二周,PYTHON图形绘制 一,计算机技术的演进发展 1946-1981.从第一台计算机的诞生到IBM的PC机的出现,我们称之为”计算机系统结构时代“.————这个时代重点在解决计算能力问题 198 ...

  4. 【持续更新中···】Linux下的小技巧

    1.Linux回到上级文件的命令: cd ..回到上一级目录(注意:cd 和..中间有空格) cd ~回到home目录 cd -回到某一目录

  5. Lustre文件系统部署和应用探索

    1. Lustre文件系统概述 2. Lustre文件系统部署 2.1 基本环境 本篇博客将在KVM虚拟机中部署Lustre文件系统. 操作系统版本为CentOS6.5_x86_64.Lustre软件 ...

  6. shell+curl监控网站页面(域名访问状态),并利用sendemail发送邮件

    应领导要求,对公司几个主要站点的域名访问情况进行监控.下面分享一个监控脚本,并利用sendemail进行邮件发送. 监控脚本如下:下面是写了一个多线程的网站状态检测脚本,直接从文件中读出站点地址,然后 ...

  7. VS2013安装和单元测试

    1. VC2013安装过程及使用感受 刚上大一的时候老师推荐我们用VC++6.0.当时也就听了老师的话用VC++6.0编程了一段时间.后来上了大二买了电脑VC++6.0支持不了WIN8.1所以我就开始 ...

  8. jeecg中vaildfrom的复杂的表单校验

    简介 jeecg生成的页面都是使用validfrom组件来确保数据的完整性和准确性. 凡要验证格式的元素均需绑定datatype属性,datatype可选值内置有10类,用来指定不同的验证格式. 如果 ...

  9. github学习步骤

    组员1:    王文政      201303011159 作业网址 :https://github.com/1246251747/3/blob/master/jjj.txt 心得: 1.  申请gi ...

  10. Integer Sequence Dividing CodeForces - 1102A (规律)

    You are given an integer sequence 1,2,…,n1,2,…,n. You have to divide it into two sets AAand BB in su ...