一、二元分类的线性模型

线性分类、线性回归、逻辑回归:

可视化这三个线性模型的代价函数,

SQR、SCE的值都是大于等于0/1的。

理论分析上界:

将回归应用于分类:

线性回归后的参数值常用于pla/pa/logistic regression的参数初始化。

二、随机梯度下降

两种迭代优化模式:

利用全部样本------>利用随机的单个样本,

梯度下降------>随机梯度下降。

SGD与PLA的相似性:

当迭代次数足够多时,停止。

步长常取0.1。

三、使用逻辑回归的多分类问题

是非题------>选择题:

每次识别一类A,将其他类都视作非A类,

结果出现问题。

将是不是A类变为是A类的可能性:软分类,

分别计算属于某类的概率,取概率值最大的类为最后的分类结果。

OVA总结:

注意每次计算一类概率时都得利用全部样本。

四、使用二元分类的多分类问题

OVA经常不平衡,即属于某类的样本过多时,分类结果往往倾向于该类。

为更加平衡,使用OVO。

OVA保留一类,其他为非该类,每次利用全部样本;

OVO保留两类,每次只利用属于这两类的样本,

通过投票得出最终分类结果。

OVO总结:

OVA vs OVO:

机器学习基石笔记:11 Linear Models for Classification的更多相关文章

  1. Coursera台大机器学习课程笔记10 -- Linear Models for Classification

    这一节讲线性模型,先将几种线性模型进行了对比,通过转换误差函数来将linear regression 和logistic regression 用于分类. 比较重要的是这种图,它解释了为何可以用Lin ...

  2. 机器学习基石笔记:11 Linear Models for Classification、LC vs LinReg vs LogReg、OVA、OVO

    原文地址:https://www.jianshu.com/p/6f86290e70f9 一.二元分类的线性模型 线性回归后的参数值常用于PLA/PA/Logistic Regression的参数初始化 ...

  3. 11 Linear Models for Classification

    一.二元分类的线性模型 线性分类.线性回归.逻辑回归 可视化这三个线性模型的代价函数 SQR.SCE的值都是大于等于0/1的 理论分析上界 将回归应用于分类 线性回归后的参数值常用于pla/pa/lo ...

  4. 机器学习技法笔记(2)-Linear SVM

    从这一节开始学习机器学习技法课程中的SVM, 这一节主要介绍标准形式的SVM: Linear SVM 引入SVM 首先回顾Percentron Learning Algrithm(感知器算法PLA)是 ...

  5. Andrew Ng机器学习公开课笔记 -- Generalized Linear Models

    网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回 ...

  6. 《机器学习基石》---Linear Models for Classification

    1 用回归来做分类 到目前为止,我们学习了线性分类,线性回归,逻辑回归这三种模型.以下是它们的pointwise损失函数对比(为了更容易对比,都把它们写作s和y的函数,s是wTx,表示线性打分的分数) ...

  7. 机器学习基石笔记:09 Linear Regression

    线性回归假设: 代价函数------均方误差: 最小化样本内代价函数: 只有满秩方阵才有逆矩阵. 线性回归算法流程: 线性回归算法是隐式迭代的. 线性回归算法泛化可能的保证: 根据矩阵的迹的性质:tr ...

  8. PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)

    主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...

  9. 斯坦福机器学习视频笔记 Week1 Linear Regression and Gradient Descent

    最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...

随机推荐

  1. python学习Day3 变量、格式化输出、注释、基本数据类型、运算符

    今天复习内容(7项) 1.语言的分类 -- 机器语言:直接编写0,1指令,直接能被硬件执行 -- 汇编语言:编写助记符(与指令的对应关系),找到对应的指令直接交给硬件执行 -- 高级语言:编写人能识别 ...

  2. win10版office365激活序列码

    win10版office365激活序列码(在别的地方找到一个) : NKGG6-WBPCC-HXWMY-6DQGJ-CPQVG 1.在线安装Office2016预览版后它是不会自动激活的,需在Offi ...

  3. extentReport生成测试报告

    之前在使用extentReport生成测试报告的时候,没有加载到相关的css,经检查为下面两个文件没有正确加载 后改变配置,加载本地的css和js文件,目前测试报告正确显示 1.创建TestNg的Re ...

  4. IOC 和DI(转载)

    IOC 是什么? Ioc—Inversion of Control,即“控制反转”,不是什么技术,而是一种设计思想.在Java开发中,Ioc意味着将你设计好的对象交给容器控制,而不是传统的在你的对象内 ...

  5. IP路由配置之---------配置PPP

    实验设备:两台华三路由器,两台PC,一条V.35线 PPP是数据链路层的协议,链路层的协议有很多如帧中继fr等 实验一,PAP验证(是一种以明码传送用户名和密码的验证方式) 步骤一,在主验证方设置一个 ...

  6. Java的三种代理模式(Spring动态代理对象)

    Java的三种代理模式 1.代理模式 代理(Proxy)是一种设计模式,提供了对目标对象另外的访问方式;即通过代理对象访问目标对象.这样做的好处是:可以在目标对象实现的基础上,增强额外的功能操作,即扩 ...

  7. 【转载】Windows上那些值得推荐的良心软件-整理 easybcd 引导工具 easyuefi 引导工具

    您查询的关键词是:清理dism知乎 以下是该网页在北京时间 2019年03月17日 21:56:16 的快照: 如果打开速度慢,可以尝试快速版:如果想更新或删除快照,可以投诉快照. 百度和网页 htt ...

  8. 46-2016 蓝桥杯 java B 组

    1.煤球数目 有一堆煤球,堆成三角棱锥形.具体: 第一层放1个, 第二层3个(排列成三角形), 第三层6个(排列成三角形), 第四层10个(排列成三角形), .... 如果一共有100层,共有多少个煤 ...

  9. PHP+ajax实现二级联动

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 解决 ora-28001 密码过期的处理办法

    转载自:https://blog.csdn.net/pengyouchuan/article/details/12905623 操作步骤: $sqlplus / as sysdba ALTER PRO ...