CF871D Paths
题意:
n个点的无向图,若$\gcd(x,y) \neq1$则$(x,y)$有边,统计$1\sim n$构成的无向图两两点对最短路是之和是多少(两点不连通最短路记为0)?$n\leq 10^7$。
题解:
先分类讨论一下:
- 1和$>\frac n2$的素数是孤立点,排除掉,其余是一个联通块。
- $\gcd(x,y)\neq1\longrightarrow dis(x,y)=1$
- 记$mi[x]$为x的最小素因子,$mi[x]\times mi[y]\leq n\longrightarrow dis(x,y)=2$
- 其余均可通过$x \longrightarrow 2\times mi[x] \longrightarrow 2\times mi[y] \longrightarrow y$实现$dis(x,y)=3$
分别考虑:
- 直接排除即可
- 方案数$=\sum_x x-1-\varphi(x)$
- 方案数$=\sum_{x,y}[\gcd(x,y)=1][mi[x]\times mi[y] \leq n]$
- 剩余点对
考虑第3种情况怎么求:
“看到$\gcd$想反演”:
$$
\begin{aligned}
ans&=\sum_{d=1}^n\mu(d)\sum_{d|x}\sum_{d|y}[mi[x]\times mi[y]\leq n]\\
&=\sum_{x=1}^n\sum_{y=1}^n[mi[x]\times mi[y]\leq n]+\sum_{d=2}^n\mu(d)\sum_{d|x}\sum_{d|y}[mi[x]\times mi[y]\leq n]
\end{aligned}
$$
前一部分比较容易求解,直接开桶维护前缀和即可;
后一部分再分类讨论:
1. $d\leq \sqrt{n}$:由于$d|x$,所以必定有$mi[x]\leq mi[d]$,所以对于任意$d|x,d|y$都有$mi[x]\times mi[y]\leq n$,所以可行方案数为$(\frac n2)^2$。
2. $d>\sqrt{n}$:由于$d|x,d|y$,若设$x=k_1d,y=k_2d$,那么有$k_1,k_2\leq \sqrt{n}$,故只有当$k_1=k_2=1$且d为质数时$mi[x]\times mi[y]>n$,可行方案数为$(\frac n2)^2-1$。
那么就只要枚举d就可以$\mathcal{O}(1)$算答案了。
使用线性筛求积性函数$\varphi(i)$和$\mu(i)$。至此本题解决。
复杂度$\mathcal{O}(n)$。
code:
#include<bits/stdc++.h>
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define ll long long using namespace std; const int N=1e7+;
int n,cnt,phi[N],mu[N],p[N/],vis[N],T[N],pre[N];
ll sum1,sum2,sum3,ans,all; void sieve(int n){
phi[]=mu[]=;
rep (i,,n){
if (!vis[i]) p[++cnt]=vis[i]=i,phi[i]=i-,mu[i]=-;
for (int j=;j<=cnt&&i*p[j]<=n;j++){
vis[i*p[j]]=p[j];
if (i%p[j]==){phi[i*p[j]]=phi[i]*p[j]; break;}
phi[i*p[j]]=phi[i]*(p[j]-);
mu[i*p[j]]=-mu[i];
}
}
} int main(){
scanf("%d",&n); sieve(n);
rep (i,,n) if (vis[i]!=i||i<=n/) all++; all=all*(all-)/; //所有非0数对
rep (i,,n) sum1+=i--phi[i]; ans+=sum1;
rep (i,,n) if (vis[i]!=i||i<=n/) T[vis[i]]++;
rep (i,,n) pre[i]=pre[i-]+T[i];
rep (i,,n) if (vis[i]!=i||i<=n/) sum2+=pre[n/vis[i]]; //不考虑gcd(x,y)=1的条件
int m=sqrt(n);
rep (i,,n){ //减去gcd(x,y)>1的对数:枚举i为>1的gcd
ll tmp=;
tmp+=(ll)(n/i)*(n/i); //vis[ki]<=vis[i]故两个vis[ki]相乘必定<=n
if (i>m&&vis[i]==i) tmp--; //vis[ki]<=vis[k],而k<=m,故只有当k1=k2=1且i为质数时vis[k1i]*vis[k2i]>n
sum2+=mu[i]*tmp;
}
sum2/=; ans+=sum2*;
ans+=(all-sum1-sum2)*;
printf("%lld\n",ans);
return ;
}
CF871D Paths的更多相关文章
- [LeetCode] Binary Tree Paths 二叉树路径
Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...
- [LeetCode] Unique Paths II 不同的路径之二
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- [LeetCode] Unique Paths 不同的路径
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- leetcode : Binary Tree Paths
Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...
- UVA 10564 Paths through the Hourglass[DP 打印]
UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...
- LeetCode-62-Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- Leetcode Unique Paths II
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- POJ 3177 Redundant Paths(边双连通的构造)
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13717 Accepted: 5824 ...
- soj 1015 Jill's Tour Paths 解题报告
题目描述: 1015. Jill's Tour Paths Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Every ...
随机推荐
- Python笔记记录
python2和python3的不同: Unicode(统一码.万国码),在3里面可以直接写中文了. python2里rae_input与python3中的input效果一样 在计算机内存中,统一用U ...
- js--基础(对象、数组、函数、if语句、while语句、do while语句、continue语句、break语句)
三.流程控制:1.单行语句var age =20;//单行语句 2.复合语句花括号包含起来的与聚集和叫做复合语句,一对花括号表示一个复合语句 ,处理时可以当成一个单行语句来看待,一般复合句与叫做代码块 ...
- mac pro 基本使用
command+空格 调出搜索框 可以输入:网络,就是配置ip等信息 可以输入:终端,就是命令行窗口 可以输入:触控板,可以调节多点触控版 可以输入:系统偏好设置,进行配置 触控板:多点触控——两个 ...
- IDEA导入JAR的源代码
- VS2015 生成事件 命令参数
来源:https://stackoverflow.com/questions/11001822/copy-files-from-one-project-to-another-using-post-bu ...
- Go中的panic和recover
这两个内置函数,用来处理go的运行时错误. panic用来主动抛出错误, recover用来捕获panic抛出的错误. recover()和defer一起使用, 但是recover()只有在defer ...
- golang 的glide包管理使用技巧教程
安装glide ➜ wemall git:(master) ✗ go get github.com/Masterminds/glide ➜ wemall git:(master) ✗ go insta ...
- appium---第三个脚本,进行模拟登陆
我这边模拟的是第三方QQ登陆 刚开始顺风顺水,启动--我的--点击头像--跳转登陆--点击QQ登陆,以上都可以通过id寻找,因为都是同一个包名下,肯定有id,如果没有,一定是技术忘记了 ..... 然 ...
- 059 SparkStream介绍
离线计算框架:MR,hive-->对时间要求不严格 实时计算框架:SparkCore-->要求job执行时间比较快 交互式计算框架:SparkSQL,Hive,-->提供SQL操作的 ...
- poi设置打印页页脚和页数设置
之前在网上搜了很久,也没有搜到具体页脚页数的答案,最后还是在官方api文档上找到了答案: HSSFPrintSetup printSetup = (HSSFPrintSetup) sheet.getP ...