link

题意:

n个点的无向图,若$\gcd(x,y) \neq1​$则$(x,y)​$有边,统计$1\sim n​$构成的无向图两两点对最短路是之和是多少(两点不连通最短路记为0)?$n\leq 10^7​$。

题解:

先分类讨论一下:

  1. 1和$>\frac n2​$的素数是孤立点,排除掉,其余是一个联通块。
  2. $\gcd(x,y)\neq1\longrightarrow dis(x,y)=1​$
  3. 记$mi[x]$为x的最小素因子,$mi[x]\times mi[y]\leq n\longrightarrow dis(x,y)=2$
  4. 其余均可通过$x \longrightarrow 2\times mi[x] \longrightarrow 2\times mi[y] \longrightarrow y$实现$dis(x,y)=3$

分别考虑:

  1. 直接排除即可
  2. 方案数$=\sum_x x-1-\varphi(x)$
  3. 方案数$=\sum_{x,y}[\gcd(x,y)=1][mi[x]\times mi[y] \leq n]$
  4. 剩余点对

考虑第3种情况怎么求:

“看到$\gcd​$想反演”:
$$
\begin{aligned}
ans&=\sum_{d=1}^n\mu(d)\sum_{d|x}\sum_{d|y}[mi[x]\times mi[y]\leq n]\\
&=\sum_{x=1}^n\sum_{y=1}^n[mi[x]\times mi[y]\leq n]+\sum_{d=2}^n\mu(d)\sum_{d|x}\sum_{d|y}[mi[x]\times mi[y]\leq n]
\end{aligned}
$$
前一部分比较容易求解,直接开桶维护前缀和即可;

后一部分再分类讨论:

1. $d\leq \sqrt{n}​$:由于$d|x​$,所以必定有$mi[x]\leq mi[d]​$,所以对于任意$d|x,d|y​$都有$mi[x]\times mi[y]\leq n​$,所以可行方案数为$(\frac n2)^2​$。
2. $d>\sqrt{n}$:由于$d|x,d|y$,若设$x=k_1d,y=k_2d$,那么有$k_1,k_2\leq \sqrt{n}$,故只有当$k_1=k_2=1$且d为质数时$mi[x]\times mi[y]>n$,可行方案数为$(\frac n2)^2-1$。

那么就只要枚举d就可以$\mathcal{O}(1)$算答案了。

使用线性筛求积性函数$\varphi(i)$和$\mu(i)​$。至此本题解决。

复杂度$\mathcal{O}(n)$。

code:

 #include<bits/stdc++.h>
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define ll long long using namespace std; const int N=1e7+;
int n,cnt,phi[N],mu[N],p[N/],vis[N],T[N],pre[N];
ll sum1,sum2,sum3,ans,all; void sieve(int n){
phi[]=mu[]=;
rep (i,,n){
if (!vis[i]) p[++cnt]=vis[i]=i,phi[i]=i-,mu[i]=-;
for (int j=;j<=cnt&&i*p[j]<=n;j++){
vis[i*p[j]]=p[j];
if (i%p[j]==){phi[i*p[j]]=phi[i]*p[j]; break;}
phi[i*p[j]]=phi[i]*(p[j]-);
mu[i*p[j]]=-mu[i];
}
}
} int main(){
scanf("%d",&n); sieve(n);
rep (i,,n) if (vis[i]!=i||i<=n/) all++; all=all*(all-)/; //所有非0数对
rep (i,,n) sum1+=i--phi[i]; ans+=sum1;
rep (i,,n) if (vis[i]!=i||i<=n/) T[vis[i]]++;
rep (i,,n) pre[i]=pre[i-]+T[i];
rep (i,,n) if (vis[i]!=i||i<=n/) sum2+=pre[n/vis[i]]; //不考虑gcd(x,y)=1的条件
int m=sqrt(n);
rep (i,,n){ //减去gcd(x,y)>1的对数:枚举i为>1的gcd
ll tmp=;
tmp+=(ll)(n/i)*(n/i); //vis[ki]<=vis[i]故两个vis[ki]相乘必定<=n
if (i>m&&vis[i]==i) tmp--; //vis[ki]<=vis[k],而k<=m,故只有当k1=k2=1且i为质数时vis[k1i]*vis[k2i]>n
sum2+=mu[i]*tmp;
}
sum2/=; ans+=sum2*;
ans+=(all-sum1-sum2)*;
printf("%lld\n",ans);
return ;
}

CF871D Paths的更多相关文章

  1. [LeetCode] Binary Tree Paths 二叉树路径

    Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...

  2. [LeetCode] Unique Paths II 不同的路径之二

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  3. [LeetCode] Unique Paths 不同的路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  4. leetcode : Binary Tree Paths

    Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...

  5. UVA 10564 Paths through the Hourglass[DP 打印]

    UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...

  6. LeetCode-62-Unique Paths

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  7. Leetcode Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  8. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  9. soj 1015 Jill's Tour Paths 解题报告

    题目描述: 1015. Jill's Tour Paths Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Every ...

随机推荐

  1. IP的计算

    IP的计算 时间限制: 1 Sec  内存限制: 32 MB 位无符号整数来表示,一般用点分方式来显示,点将IP地址分成4个部分,每个部分为8位,表示成一个无符号整数(因此不需要用正号出现),如192 ...

  2. 解决:sudo: pip: command not found

    1-问题:Ubuntu下执行sudo pip install package-name 出现 sudo: pip: command not found 的问题. 2-原因:编译sudo的时候加入了–w ...

  3. Java 9 中的 9 个新特性你知道吗

    摘要: Java 8 发布三年多之后,即将快到2017年7月下一个版本发布的日期了. 你可能已经听说过 Java 9 的模块系统,但是这个新版本还有许多其它的更新. 这里有九个令人兴奋的新功能将与 J ...

  4. Stuck on "Authenticating with iTunes Store"

    https://forums.developer.apple.com/thread/76803 Try this, it fixed it for me. Open Terminal and run: ...

  5. 小程序wx.getUserInfo获取用户信息方案介绍

    问题模块 框架类型 问题类型 API/组件名称 终端类型 操作系统 微信版本 基础库版本 API和组件 - -   - -     背景 小程序一个比较重要的能力就是获取用户信息,也就是使用 wx.g ...

  6. As/IDEA json自动生成java bean

    1.先安装GsonFormat插件:File-->Setting-->Plugins-->GsonFormat-->OK 2.new 一个新的Class空文件,然后 Alt+I ...

  7. (转载)Memcached和Redis简介

    转载自: Memcached和Redis简介 博主的Redis资料列表.http://www.cnblogs.com/programlearning/category/1003158.html 前言: ...

  8. css3三角形冒泡泡图形制作

    图一: 图二: <!DOCTYPE html> <html> <head> <title>css 三角形</title> <style ...

  9. WINDOWS 2008Server 配置nginx 反向代理服务器 安装成服务

    本案例有用过可行 反向代理就是是网站通过一台机器发布到公网,客户访问的时候是直接访问那台代理机器的,然后通过那台机器才访问到内网网站.   0.先要在域名官网上面配置域名对应的IP地址,然后要在自己路 ...

  10. Codeforces 986C AND Graph dfs

    原文链接https://www.cnblogs.com/zhouzhendong/p/9161514.html 题目传送门 - Codeforces 986C 题意 给定 $n,m (0\leq n\ ...