BZOJ.4340.[BJOI2015]隐身术(后缀数组 搜索)
\(Description\)
给定两个串\(S,T\)以及一个数\(k\),求\(T\)中有多少个子串,满足和\(S\)的编辑距离不超过\(k\)。
\(|S|+|T|\leq10^5,\ k\leq 5\)。
\(Solution\)
考虑枚举\(T\)的每个后缀\(i\)(注意后缀是指啥= =),求后缀\(i\)中有哪些前缀满足条件。
怎么处理编辑距离呢?\(k\)很小,直接搜。
设\(S,T\)分别匹配到\(x,y\)位置,可以用\(SA\)求\(LCP(x,y)\),然后直接跳到下一个不匹配位置。
如果\(S_x\neq T_y\),那么有三种选择:删掉\(T_y\to x,y+1\),在\(T_y\)前插入一个\(S_x\to x+1,y\),把\(T_y\)替换成\(S_x\to x+1,y+1\)。
所以\(DFS\)的复杂度是\(3^k\)的。
匹配完\(S\)串后,如果还剩下一些可用编辑距离\(rest\),显然此时前缀\([y-rest,y+rest]\)都满足条件,差分一下即可。注意这些前缀不要算重(一个位置只能算一次)。
复杂度\(O(n\log n+n3^k)\)。
//10296kb 3476ms
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long LL;
const int N=1e5+7;
int na,nb,Now,L,R,sum[N];
char s[N];
struct Suffix_Array
{
int sa[N],sa2[N],rk[N],tm[N],ht[N],Log[N],st[17][N];
inline int LCP(int l,int r)
{
l=rk[l], r=rk[r]; if(l>r) std::swap(l,r);
++l; int k=Log[r-l+1];
return std::min(st[k][l],st[k][r-(1<<k)+1]);
}
void Build(const char *s,const int n)
{
int m=27,*x=rk,*y=sa2;
for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]=s[i]-'A'+1];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[i]]--]=i;
for(int k=1,p=0; k<n; k<<=1,m=p,p=0)
{
for(int i=n-k+1; i<=n; ++i) y[++p]=i;
for(int i=1; i<=n; ++i) if(sa[i]>k) y[++p]=sa[i]-k;
for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[y[i]]]--]=y[i];
std::swap(x,y), x[sa[1]]=p=1;
for(int i=2; i<=n; ++i)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?p:++p;
if(p>=n) break;
}
for(int i=1; i<=n; ++i) rk[sa[i]]=i;
ht[1]=0;
for(int i=1,k=0; i<=n; ++i)
{
if(rk[i]==1) continue;
if(k) --k;
int p=sa[rk[i]-1];
while(i+k<=n && p+k<=n && s[i+k]==s[p+k]) ++k;
ht[rk[i]]=k;
}
st[0][1]=ht[1];
for(int i=2; i<=n; ++i) Log[i]=Log[i>>1]+1, st[0][i]=ht[i];
for(int j=1; j<=Log[n]; ++j)
for(int t=1<<j-1,i=n-t; i; --i)
st[j][i]=std::min(st[j-1][i],st[j-1][i+t]);
}
}sa;
inline void Upd(int l,int r)
{
l=std::max(l,Now), r=std::min(r,nb), L=std::min(l,L), R=std::max(r+1,R);
++sum[l], --sum[r+1];//注意可行前缀位置的限制(在Now~nb内)
}
void DFS(int x,int y,int rest)
{
int t=sa.LCP(x,y+na+1);
x+=t, y+=t;
if(x>na||y>nb)
{
int d=rest-(na-x+1);
if(d>=0) Upd(y-1-d,y-1+d);
return;
}
if(rest) --rest, DFS(x+1,y,rest), DFS(x,y+1,rest), DFS(x+1,y+1,rest);
}
int main()
{
int K; scanf("%d%s",&K,s+1);
na=strlen(s+1), s[na+1]='[';
scanf("%s",s+na+2), nb=strlen(s+na+2);
const int n=na+nb+1; sa.Build(s,n);
int ans=0;
for(int i=1,delta=std::max(0,na-K); i+delta<=nb; ++i)
{
Now=i, L=N, R=0, DFS(1,i,K);
for(int j=L; j<=R; ++j) ans+=(sum[j]+=sum[j-1])>0;
for(int j=L; j<=R; ++j) sum[j]=0;
}
printf("%d\n",ans);
return 0;
}
BZOJ.4340.[BJOI2015]隐身术(后缀数组 搜索)的更多相关文章
- BZOJ4340:[BJOI2015]隐身术(后缀数组,ST表,DFS)
Description 给定两个串A,B.请问B中有多少个非空子串和A的编辑距离不超过K? 所谓“子串”,指的是B中连续的一段.不同位置的内容相同的子串算作多个. 两个串之间的“编辑距离”指的是把一个 ...
- [BZOJ4340][BJOI2015]隐身术(后缀数组)
考虑到K很小,于是可以暴搜每次用的是哪种操作,跳过AB相等的字符可以用SA求LCP加速. 主要流程就是,枚举B的每个后缀,对每个后缀统计合法前缀个数.DFS搜索每次决策,用SA跳过相同字符,当A或B匹 ...
- 【BZOJ 3473】 字符串 (后缀数组+RMQ+二分 | 广义SAM)
3473: 字符串 Description 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串? Input 第一行两个整数n,k. 接下来n行每行一个字符串 ...
- BZOJ 3172([Tjoi2013]单词-后缀数组第一题+RMQ)
3172: [Tjoi2013]单词 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 268 Solved: 145 [ Submit][ St ...
- BZOJ 2865 字符串识别 | 后缀数组 线段树
集训讲字符串的时候我唯一想出正解的题-- 链接 BZOJ 2865 题面 给出一个长度为n (n <= 5e5) 的字符串,对于每一位,求包含该位的.最短的.在原串中只出现过一次的子串. 题解 ...
- BZOJ 3230 相似子串 | 后缀数组 二分 ST表
BZOJ 3230 相似子串 题面 题解 首先我们要知道询问的两个子串的位置. 先正常跑一遍后缀数组并求出height数组. 对于每一个后缀suffix(i),考虑以i开头的子串有多少是之前没有出现过 ...
- BZOJ 4278: [ONTAK2015]Tasowanie 后缀数组 + 贪心 + 细节
Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in", "r", stdin ...
- BZOJ 4278: [ONTAK2015]Tasowanie (后缀数组 / 二分+hash)
直接归并,然后如果哪边的后缀字典序比较小就去哪边,然后就可以后缀数组 博客传送门- 但是本蒟蒻不会后缀数组 Upd:Upd:Upd:现在会了233.一道差不多的题:BZOJ 1692: [Usaco2 ...
- BZOJ 1396: 识别子串( 后缀数组 + 线段树 )
这道题各位大神好像都是用后缀自动机做的?.....蒟蒻就秀秀智商写一写后缀数组解法..... 求出Height数组后, 我们枚举每一位当做子串的开头. 如上图(x, y是height值), Heigh ...
随机推荐
- 论坛IP地址追踪&路由器密码嗅探
一.论坛IP地址查询 1.任何应用程序部可以调用一个标准的库函数来查看给定名称的主机IP地址.类似地,系统还提供一个逆函致—给定主机的IP地址,查看它所对应的主机名.大多数使用主机名作为参数的应用程序 ...
- AI学习吧-登录注册
登录注册注销 如果需要给表设置权限,没有登录就不可以查看,只需要在每个视图函数之前加上Auth_classes=[ ]即可! 增加两张表,做登录认证 #models.py #做登录验证 class U ...
- docker文件复制到centos/linux/ubantun环境下
1.有些时候我们需要将容器里面的文件,弄到系统里面来分析,像报错log等 格式:docker cp 容器名:文件在容器里面的路径 要拷贝到宿主机的对应路径 2.有些情况下,我们需要将文 ...
- centos/redhat破解账号密码
说明:1.个人觉得centos系统和redhat系统差不多,界面都差不多一样. 2.下面方法用于开机root密码忘了,其他人篡改root密码等等 下面是破解账号密码(图解) 之后要等久点 效果: 方法 ...
- VS和IIS的一些问题
运行所有MVC一直502,重启了iis服务, 之后弹出这个框: 之后的解决办法: 1. If you open the applicationhost,config file in VS while ...
- 关于js渲染网页时爬取数据的思路和全过程(附源码)
于js渲染网页时爬取数据的思路 首先可以先去用requests库访问url来测试一下能不能拿到数据,如果能拿到那么就是一个普通的网页,如果出现403类的错误代码可以在requests.get()方法里 ...
- I: Carryon的字符串排序(字典树/map映射)
2297: Carryon的字符串 Time Limit: C/C++ 1 s Java/Python 3 s Memory Limit: 128 MB Accepted ...
- Python深度学习案例1--电影评论分类(二分类问题)
我觉得把课本上的案例先自己抄一遍,然后将书看一遍.最后再写一篇博客记录自己所学过程的感悟.虽然与课本有很多相似之处.但自己写一遍感悟会更深 电影评论分类(二分类问题) 本节使用的是IMDB数据集,使用 ...
- 在th中显示图片
从DataTable中获取值: foreach (DataRow dr in ((DataTable)ViewBag.bookInfoList).Rows) { <tr> <th c ...
- Nginx 提示host not found in upstream 错误解决方法
Nginx DNS resolver配置实例,本文讲解在proxy_pass 和 upstream server 通信的时候需要手动指定 resolver,本文就给出了配置实例. nginx 通过 ...