机器学习——支持向量机(SVM)之核函数(kernel)
对于线性不可分的数据集,可以利用核函数(kernel)将数据转换成易于分类器理解的形式。
如下图,如果在x轴和y轴构成的坐标系中插入直线进行分类的话, 不能得到理想的结果,或许我们可以对圆中的数据进行某种形式的转换,从而得到某些新的变量来表示数据。在这种表示情况下,我们就更容易得到大于0或者小于0的测试结果。在这个例子中,我们将数据从一个特征空间转换到另一个特征空间,在新的空间下,我们可以很容易利用已有的工具对数据进行处理,将这个过程称之为从一个特征空间到另一个特征空间的映射。在通常情况下,这种映射会将低维特征空间映射到高维空间。
这种从某个特征空间到另一个特征空间的映射是通过核函数来。
SVM优化中一个特别好的地方就是,所有的运算都可以写成内积(inner product)的形式。向量的内积指的就是两个向量相乘,之后得到单个标量或者数值。我们可以把内积运算替换成核函数,而并不必做简化处理。将内积替换成核函数的方法被称之为核技巧(kernel trick)或者核“变电”(kernel substation)。
径向基核函数
径向基核函数是SVM中常用的一个核函数。径向基函数是一个采用向量作为自变量的函数,能够基于向量距离运算输出一个标量。
'''#######********************************
以下是有核函数的版本
'''#######********************************
class optStruct:
def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters
self.X = dataMatIn
self.labelMat = classLabels
self.C = C
self.tol = toler
self.m = shape(dataMatIn)[0]
self.alphas = mat(zeros((self.m,1)))
self.b = 0
self.eCache = mat(zeros((self.m,2))) #first column is valid flag
self.K = mat(zeros((self.m,self.m)))
for i in range(self.m):
self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup) def calcEk(oS, k): #计算误差
fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
Ek = fXk - float(oS.labelMat[k])
return Ek def selectJ(i, oS, Ei): #用于选择第2个循环(内循环)的alpha值,内循环中的启发式方法
maxK = -1; maxDeltaE = 0; Ej = 0
oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E
validEcacheList = nonzero(oS.eCache[:,0].A)[0]
if (len(validEcacheList)) > 1:
for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E
if k == i: continue #跳过本身
Ek = calcEk(oS, k)
deltaE = abs(Ei - Ek)
if (deltaE > maxDeltaE): #选取具有最大步长的j
maxK = k; maxDeltaE = deltaE; Ej = Ek
return maxK, Ej
else: #in this case (first time around) we don't have any valid eCache values
j = selectJrand(i, oS.m)
Ej = calcEk(oS, j)
return j, Ej def updateEk(oS, k): #alpha改变后,更新缓存
Ek = calcEk(oS, k)
oS.eCache[k] = [1,Ek] #内部循环的代码和简版的SMO代码很相似
def innerL(i, oS):
Ei = calcEk(oS, i)
#判断每一个alpha是否被优化过,如果误差很大,就对该alpha值进行优化,toler是容错率
if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
j,Ej = selectJ(i, oS, Ei) #使用启发式方法选取第2个alpha,选取使得误差最大的alpha
alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
#保证alpha在0与C之间
if (oS.labelMat[i] != oS.labelMat[j]): #当y1和y2异号,计算alpha的取值范围
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else: #当y1和y2同号,计算alpha的取值范围
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L==H: print "L==H"; return 0
#eta是alpha[j]的最优修改量,eta=K11+K22-2*K12,也是f(x)的二阶导数,K表示核函数
eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
#如果二阶导数-eta <= 0,说明一阶导数没有最小值,就不做任何改变,本次循环结束直接运行下一次for循环
if eta >= 0: print "eta>=0"; return 0
oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta #利用公式更新alpha[j],alpha2new=alpha2-yj(Ei-Ej)/eta
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L) #判断alpha的范围是否在0和C之间
updateEk(oS, j) #在alpha改变的时候更新Ecache
print "j=",j
print oS.alphas.A[j]
#如果alphas[j]没有调整,就忽略下面语句,本次循环结束直接运行下一次for循环
if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
updateEk(oS, i) #在alpha改变的时候更新Ecache
print "i=",i
print oS.alphas.A[i]
#已经计算出了alpha,接下来根据模型的公式计算b
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
#根据公式确定偏移量b,理论上可选取任意支持向量来求解,但是现实任务中通常使用所有支持向量求解的平均值,这样更加鲁棒
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
else: oS.b = (b1 + b2)/2.0
return 1 #如果有任意一对alpha发生改变,返回1
else: return 0 #完整版Platt SMO的外循环
def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):
oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
iter = 0
entireSet = True; alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): #有alpha改变同时遍历次数小于最大次数,或者需要遍历整个集合
alphaPairsChanged = 0
#首先进行完整遍历,过程和简化版的SMO一样
if entireSet:
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS) #i是第1个alpha的下标
print "完整遍历, 迭代次数: %d i:%d, 成对改变的次数 %d" % (iter,i,alphaPairsChanged)
iter += 1
#非边界遍历,挑选其中alpha值在0和C之间非边界alpha进行优化
else:
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] #然后挑选其中值在0和C之间的非边界alpha进行遍历
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
print "非边界, 迭代次数: %d i:%d, 成对改变的次数 %d" % (iter,i,alphaPairsChanged)
iter += 1
#如果这次是完整遍历的话,下次不用进行完整遍历
if entireSet: entireSet = False #终止完整循环
elif (alphaPairsChanged == 0): entireSet = True #如果alpha的改变数量为0的话,再次遍历所有的集合一次
print "iteration number: %d" % iter
return oS.b,oS.alphas def calcWs(alphas,dataArr,classLabels): #计算模型的参数w,即alpha*y*x转置的累加
X = mat(dataArr); labelMat = mat(classLabels).transpose()
m,n = shape(X)
w = zeros((n,1))
for i in range(m):
w += multiply(alphas[i]*labelMat[i],X[i,:].T)
return w def testRbf(k1=1.3):
dataArr,labelArr = loadDataSet('testSetRBF.txt')
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
svInd=nonzero(alphas.A>0)[0]
sVs=datMat[svInd] #get matrix of only support vectors
labelSV = labelMat[svInd];
print "there are %d Support Vectors" % shape(sVs)[0]
m,n = shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the training error rate is: %f" % (float(errorCount)/m)
dataArr,labelArr = loadDataSet('testSetRBF2.txt')
errorCount = 0
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
m,n = shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the test error rate is: %f" % (float(errorCount)/m) def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect def loadImages(dirName):
from os import listdir
hwLabels = []
trainingFileList = listdir(dirName) #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
if classNumStr == 9: hwLabels.append(-1)
else: hwLabels.append(1)
trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
return trainingMat, hwLabels def testDigits(kTup=('rbf', 10)):
dataArr,labelArr = loadImages('trainingDigits')
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
svInd=nonzero(alphas.A>0)[0]
sVs=datMat[svInd]
labelSV = labelMat[svInd];
print "there are %d Support Vectors" % shape(sVs)[0]
m,n = shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the training error rate is: %f" % (float(errorCount)/m)
dataArr,labelArr = loadImages('testDigits')
errorCount = 0
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
m,n = shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the test error rate is: %f" % (float(errorCount)/m)
机器学习——支持向量机(SVM)之核函数(kernel)的更多相关文章
- [白话解析] 深入浅出支持向量机(SVM)之核函数
[白话解析] 深入浅出支持向量机(SVM)之核函数 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解支持向量机中的核函数概念,并且给大家虚构了一个水浒传的例子来做进一步的通俗 ...
- 机器学习——支持向量机SVM
前言 学习本章节前需要先学习: <机器学习--最优化问题:拉格朗日乘子法.KKT条件以及对偶问题> <机器学习--感知机> 1 摘要: 支持向量机(SVM)是一种二类分类模型, ...
- coursera机器学习-支持向量机SVM
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- 机器学习支持向量机SVM笔记
SVM简述: SVM是一个线性二类分类器,当然通过选取特定的核函数也可也建立一个非线性支持向量机.SVM也可以做一些回归任务,但是它预测的时效性不是太长,他通过训练只能预测比较近的数据变化,至于再往后 ...
- 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...
- 机器学习-支持向量机SVM
简介: 支持向量机(SVM)是一种二分类的监督学习模型,他的基本模型是定义在特征空间上的间隔最大的线性模型.他与感知机的区别是,感知机只要找到可以将数据正确划分的超平面即可,而SVM需要找到间隔最大的 ...
- 机器学习:SVM(核函数、高斯核函数RBF)
一.核函数(Kernel Function) 1)格式 K(x, y):表示样本 x 和 y,添加多项式特征得到新的样本 x'.y',K(x, y) 就是返回新的样本经过计算得到的值: 在 SVM 类 ...
- 机器学习——支持向量机(SVM)
支持向量机原理 支持向量机要解决的问题其实就是寻求最优分类边界.且最大化支持向量间距,用直线或者平面,分隔分隔超平面. 基于核函数的升维变换 通过名为核函数的特征变换,增加新的特征,使得低维度空间中的 ...
随机推荐
- ubuntu 16 安装django nginx uWSGI
参考 https://www.digitalocean.com/community/tutorials/how-to-serve-django-applications-with-uwsgi-and- ...
- (九)Maven坐标详解
Maven的一个核心的作用就是管理项目的依赖,引入我们所需的各种jar包等.为了能自动化的解析任何一个Java构件,Maven必须将这些Jar包或者其他资源进行唯一标识,这是管理项目的依赖的基础,也就 ...
- tuple放入dict中
tuple放入dict中是否可以正常运行 # 将tuple放入dict中 a = ('AI','Kobe','Yao') b = ('AI',['Kobe','Yao']) dict1 = {'a': ...
- audio 基本功能实现(audio停止播放,audio如何静音,audio音量控制等)
audio最简单原始的播放.暂停.停止.静音.音量大小控制的功能,注意某些浏览器会有权限无法自动播放噢(video也会如此) <!doctype html> <html> &l ...
- h5自定义audio(问题及解决)
h5活动需要插入音频,但又需要自定义样式,于是自己写咯 html <!-- cur表示当前时间 max表示总时长 input表示进度条 --> <span class='cur'&g ...
- VNC connect:Connection refused(10061)
在Windows机器上使用VNC Viewer访问Linux服务器,有时候会遇到"connect:Connection refused(10061)"这个错误,导致这个错误出现的原 ...
- Java 根据经纬度计算两点之间的距离
package xxx.driver.business.utils; /** * <p>Represents a point on the surface of a sphere. (Th ...
- Parseval's theorem 帕塞瓦尔定理
Source: wiki: Parseval's theorem As for signal processing, the power within certain frequency band = ...
- [LeetCode] Longest Valid Parentheses 最长有效括号
Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...
- [LeetCode] Reverse Integer 翻转整数
Reverse digits of an integer. Example1: x = 123, return 321 Example2: x = -123, return -321 click to ...