SVD 学习笔记
本文主要学习了这篇博客:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html,将SVD讲的恨透,特征值讲的也非常好。
特征值
矩阵分解时可以将矩阵用一组两两正交的基表示,也就是一组特征向量,而特征值就是表示每个特征向量的重要程度的数值。
奇异值
特征值是对方阵来说的,对于非方阵我们该怎么办呢,我们仿照特征分解,就有了下面的式子
假设A是一个M*N的矩阵,那么得到的U是一个M * M的方阵(里面的向量是正交的,U里面的向量称为左奇异向量),Σ是一个M *N的矩阵(除了对角线的元素都是0,对角线上的元素称为奇异值),V’(V的转置)是一个N * N的矩阵,里面的向量也是正交的,V里面的向量称为右奇异向量),从图片来反映几个相乘的矩阵的大小可得下面的图片(PS:下图中用颜色方块的形状大概表示矩阵的形状)
而关于奇异值的具体求解,wikipedia 上讲的还是很好的。
注:一下为特异值的求解
对于任意的奇异值分解,矩阵Σ的对角线上的元素等于M的奇异值. U和V的列分别是奇异值中的左、右奇异向量。
奇异值分解在意义上看很一般,因此它可以适用于任意m×n矩阵,而特征分解只能适用于特定类型的方阵。不过,这两个分解之间是有关联的。 给定一个M的奇异值分解,根据上面的论述,两者的关系式如下:
关系式的右边描述了关系式左边的特征值分解。于是:
奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵,这里定义一下部分奇异值分解:
r是一个远小于m、n的数,这样矩阵的乘法看起来像是下面的样子:
右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,在这儿,r越接近于n,则相乘的结果越接近于A。而这三个矩阵的面积之和(在存储观点来说,矩阵面积越小,存储量就越小)要远远小于原始的矩阵A,我们如果想要压缩空间来表示原矩阵A,我们存下这里的三个矩阵:U、Σ、V就好了。
好,到这里SVD就相当于讲完了,其核心思想就一点用前10%甚至1%的奇异值表示了全部的奇异值,因为在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了,这样做可以大大的减少数据的存储和计算。
SVD 学习笔记的更多相关文章
- 机器学习14—SVD学习笔记
test14.py #-*- coding:utf-8 import sys sys.path.append("svdRec.py") import svdRec from num ...
- 《机器学习实战》学习笔记第十四章 —— 利用SVD简化数据
相关博客: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) <机器学习实战>学习笔记第十三章 —— 利用PCA来简化数据 奇异值分解(SVD)原理与在降维中的应用 机器学习( ...
- spark学习笔记总结-spark入门资料精化
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...
- cips2016+学习笔记︱简述常见的语言表示模型(词嵌入、句表示、篇章表示)
在cips2016出来之前,笔者也总结过种类繁多,类似词向量的内容,自然语言处理︱简述四大类文本分析中的"词向量"(文本词特征提取)事实证明,笔者当时所写的基本跟CIPS2016一 ...
- 概率图模型学习笔记:HMM、MEMM、CRF
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...
- UFLDL深度学习笔记 (五)自编码线性解码器
UFLDL深度学习笔记 (五)自编码线性解码器 1. 基本问题 在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论&q ...
- TensorFlow学习笔记4-线性代数基础
TensorFlow学习笔记4-线性代数基础 本笔记内容为"AI深度学习".内容主要参考<Deep Learning>中文版. \(X\)表示训练集的设计矩阵,其大小为 ...
- [学习笔记] Numpy基础 系统学习
[学习笔记] Numpy基础 上专业选修<数据分析程序设计>课程,老师串讲了Numpy基础,边听边用jupyter敲了下--理解+笔记. 老师讲的很全很系统,有些点没有记录,在PPT里就不 ...
- js学习笔记:webpack基础入门(一)
之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...
随机推荐
- INT32 System_UserKeyFilter(NVTEVT evt, UINT32 paramNum, UINT32 *paramArray)
INT32 System_UserKeyFilter(NVTEVT evt, UINT32 paramNum, UINT32 *paramArray){ UINT32 key = evt; if ...
- 洛谷 2633 BZOJ 2588 Spoj 10628. Count on a tree
[题解] 蜜汁强制在线... 每个点开一个从它到根的可持久化权值线段树.查询的时候利用差分的思想在树上左右横跳就好了. #include<cstdio> #include<algor ...
- codechef营养题 第二弹
第二弾が始まる! codechef problems 第二弹 一.Backup Functions 题面 One unavoidable problem with running a restaura ...
- [bzoj4521][Cqoi2016][手机号码] (数位dp+记忆化搜索)
Description 人们选择手机号码时都希望号码好记.吉利.比如号码中含有几位相邻的相同数字.不含谐音不 吉利的数字等.手机运营商在发行新号码时也会考虑这些因素,从号段中选取含有某些特征的号 码单 ...
- 【Codeforces 493C】Vasya and Basketball
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 枚举三分线(离散后)的位置 然后根据预处理的前缀和,快速算出两个队伍的分数. [代码] #include <bits/stdc++.h& ...
- 【Codeforces 977F】Consecutive Subsequence
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 设f[i]表示i作为序列的最后一个数字,最长的连续序列的长度. 用f[i]和f[i-1]+1来转移即可 [代码] import java.io ...
- ansible playbooks loop循环
在一个task中循环某个操作 1.标准循环 - name: add several users user: name: "{{ item }}" state: present gr ...
- [luoguP2782] 友好城市(DP)
传送门 转化成 lis 后 n2 搞就行 ——代码 #include <cstdio> #include <iostream> #include <algorithm&g ...
- 在Myeclipse中拷贝一个web项目,但是tomcat文件夹中没有更新,需要进行修改才能更新。
1.在Myeclipse中拷贝一个web项目,但是tocat文件夹中没有更新,需要进行修改才能更新. 2.方法:右键这个工程,然后Properties->MyEclipse->Projec ...
- yum 源本地化 (one)
First of all, you need to prepare the rpm packages, we can download them with yum command, in that w ...