这题在网上找不到题解,硬写一下午终于写出来了……

题目:

BZOJ2944

分析:

首先明确:

比较两棵节点数相同的二叉树时,根节点是第一关键字,左子树是第二关键字,右子树是第三关键字;

然后我们分析一下题目中那个4个节点,14种代码的例子

左子树大小\(sl\) 右子树大小\(sr\) 根节点 对应名次 对应代码数量 \(C_{sl}*C_{sr}\)
0 3 a 1~5 5 (abcd 、abdc、 acbd、 adbc、 adcb) \(1*5=5\)
1 2 b 6~7 2 (bacd、 badc) \(1*2=2\)
2 1 c 8~9 2 (cabd、 cbad) \(2*1=2\)
3 0 d 10~14 5 (dabc、 dacb、 dbac、 dcab、 dcba) \(5*1=5\)

(由于博客园的Markdown似乎不支持表格,此图截自我的CSDN博客

(先不管最后一列)我们发现左子树大小决定了根节点的字母,并将这14种二叉树形态分成了长度为5、2、2、5的四“段”。因此,我们知道要求第多少名,就可以根据它在哪一段求出左子树的大小(比如样例中的第11名在第4段,因此左子树大小为3,代码一定以'd'开头)。并且这个过程可以递归下去,求出树的形态。代码如下

    void dfs(ll n, int k, int tmp)
{
int sizel = 0, sizer = k - 1;
/*算出左子树的大小*/
printf("%c", (char)(sizel + tmp + 'a'));
if (sizel > 0)
dfs(/*左子树的名次*/, sizel, tmp);
if (sizer > 0)
dfs(/*右子树的名次*/, sizer, tmp + sizel + 1);
}

有一个结论,如果用\(C_n\)表示\(Catalan\)数的第n项,则\(n\)个结点的二叉树有\(C_n\)种不同的形态

(证明见Catalan number - Wikipedia,相关公式推导见【知识总结】卡特兰数 (Catalan Number) 公式的推导

那么当根节点的字母固定,左右子树大小随之固定,以该字母开头的代码的数量就是\(C_{sl}*C_{sr}\),也就是上表最后一列。

根据这个性质,可以暴力算出根节点的字母和左右子树的大小,代码如下

        while (n)
{
if (n > Catalan[sizel] * Catalan[sizer])
{
n -= Catalan[sizel] * Catalan[sizer];
sizel++, sizer--;
}
else
break;
}

这段代码执行后,\(n\)就是当根节点固定时该代码的排序(比如样例中dacb是以'd'开头的第二个,此时\(n=2\))

此时的排序是以左子树为第一关键字,右子树为第二关键字的。可以想象成一个两位数,个位满\(C_{sr}\)向十位进一。所以此时所求左子树在\(C_{sl}\)个左子树中的排名是\(\lceil \frac{n}{C_{sr}}\rceil\),所求右子树在\(C_{sr}\)个右子树中的排名是\(n\ mod\ C_{sr}\)(注意特判\(0\)的情况)

代码:

注意不是每一棵子树所代表的字母集合都是从'a'开始的,所以要有\(tmp\)变量

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
namespace zyt
{
typedef long long ll;
ll Catalan[20];
void dfs(ll n, int k, int tmp)
{
int sizel = 0, sizer = k - 1;
while (n)
{
if (n > Catalan[sizel] * Catalan[sizer])
{
n -= Catalan[sizel] * Catalan[sizer];
sizel++, sizer--;
}
else
break;
}
printf("%c", (char)(sizel + tmp + 'a'));
if (sizel > 0)
dfs(ceil((double)n / Catalan[sizer]), sizel, tmp);
if (sizer > 0)
{
int x = n % Catalan[sizer];
dfs(x ? x : Catalan[sizer], sizer, tmp + sizel + 1);
}
}
void work()
{
ll n;
int k;
scanf("%lld%d", &n, &k);
Catalan[0] = 1;
for (int i = 1; i <= k; i++)
Catalan[i] = Catalan[i - 1] * (4 * i - 2) / (i + 1);
dfs(n, k, 0);
}
}
int main()
{
zyt::work();
return 0;
}

【BZOJ2944】[Poi2000]代码(卡特兰数)的更多相关文章

  1. BZOJ2944 : [Poi2000]代码

    对于根,要让它的排名尽量小,也就是要让右子树的点数尽量多. 于是从大到小枚举右子树的点数,用Catalan数计算方案数,直到找到相应的右子树的点数为止. 此时根的排名已经确定,接下来要让左子树的代码的 ...

  2. 卡特兰数(Catalan)

    卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, ...

  3. HDU 5673 Robot ——(卡特兰数)

    先推荐一个关于卡特兰数的博客:http://blog.csdn.net/hackbuteer1/article/details/7450250. 卡特兰数一个应用就是,卡特兰数的第n项表示,现在进栈和 ...

  4. HDU 1023 Traning Problem (2) 高精度卡特兰数

    Train Problem II Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Sub ...

  5. hdu 1023 卡特兰数+高精度

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. HDU 1023 Train Problem II (卡特兰数,经典)

    题意: 给出一个数字n,假设火车从1~n的顺序分别进站,求有多少种出站序列. 思路: 卡特兰数的经典例子.n<101,用递推式解决.需要使用到大数.n=100时大概有200位以下. #inclu ...

  7. 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)

    题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...

  8. poj 1095 Trees Made to Order 卡特兰数

    这题用到了卡特兰数,详情见:http://www.cnblogs.com/jackge/archive/2013/05/19/3086519.html 解体思路详见:http://blog.csdn. ...

  9. 【HDU 5370】 Tree Maker(卡特兰数+dp)

    Tree Maker Problem Description Tree Lover loves trees crazily. One day he invents an interesting gam ...

随机推荐

  1. Wind rotor states

    test test Table of Contents 1. Wind rotor states 1.1. Turbulent Wake State 1.2. Vortex Ring State 1. ...

  2. 用记事本写第一个Java程序

    public class Welcome{ public static void main(String[] args){ System.out.println("我是尚学堂的高淇,很高兴认 ...

  3. Git——跟踪或取消跟踪文件

    在Git是用过程中,可能遇到以下情况: 1.被跟踪文件里面有不想跟踪的文件. 2.每次用git status查看状态时总是列出未被跟踪的文件. 解决方法: 1.当被跟踪的文件里面有不想跟踪的文件时,使 ...

  4. mariadb-10GTID复制及多源复制

    ---本文大纲 一.什么是GTID 二.应用场景 三.多线程复制说明 四.实现过程 五.多源复制原理 六.实现过程 ---------------------------------- 一.什么是GI ...

  5. free web rich code eidtor

    free web rich code eidtor https://i.cnblogs.com/Preferences.aspx tiny code-editor https://apps.tiny. ...

  6. 【BZOJ3790】神奇项链(manacher,树状数组)

    题意: 思路:生成一些回文拼起来使生成的段数最小 显然存在一种最优的方案,使生成的那些回文是目标串的极长回文子串 求出对于每个位置的最长回文子串,问题就转化成了: 给定一些已知起始和终止位置的线段,求 ...

  7. I - 最少拦截系统

    #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ],su ...

  8. MYSQL的一些常用函数

    #数学函数 SELECT ABS(-8);#绝对值SELECT CEILING(9.8);#查询大于等于给定数值的最小整数SELECT FLOOR(9.8);#查询小于等于给定数值的最大整数SELEC ...

  9. Container/Injection 为什么会出现容器的思路,以后会有什么的趋势,未来是怎样的

    一.为什么会出现容器的思路? 容器概念始于 1979 年提出的 UNIX chroot,它是一个 UNIX 操作系统的系统调用,将一个进程及其子进程的根目录改变到文件系统中的一个新位置,让这些进程只能 ...

  10. C#保留2位小数几种场景总结 游标遍历所有数据库循环执行修改数据库的sql命令 原生js轮盘抽奖实例分析(幸运大转盘抽奖) javascript中的typeof和类型判断

    C#保留2位小数几种场景总结   场景1: C#保留2位小数,.ToString("f2")确实可以,但是如果这个数字本来就小数点后面三位比如1.253,那么转化之后就会变成1.2 ...