他会自己下载数据:

# -*- coding: utf-8 -*-

""" AlexNet.
Applying 'Alexnet' to Oxford's 17 Category Flower Dataset classification task.
References:
- Alex Krizhevsky, Ilya Sutskever & Geoffrey E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. NIPS, 2012.
- 17 Category Flower Dataset. Maria-Elena Nilsback and Andrew Zisserman.
Links:
- [AlexNet Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
- [Flower Dataset (17)](http://www.robots.ox.ac.uk/~vgg/data/flowers/17/)
""" from __future__ import division, print_function, absolute_import import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression import tflearn.datasets.oxflower17 as oxflower17
X, Y = oxflower17.load_data(one_hot=True, resize_pics=(227, 227)) # Building 'AlexNet'
network = input_data(shape=[None, 227, 227, 3])
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 17, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=0.001) # Training
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=2)
#model.fit(X, Y, n_epoch=1000, validation_set=0.1, shuffle=True,
model.fit(X, Y, n_epoch=10, validation_set=0.1, shuffle=True,
show_metric=True, batch_size=64, snapshot_step=200,
snapshot_epoch=False, run_id='alexnet_oxflowers17')
model.save('flower-classifier')

打开tensotboard: tensorboard --logdir=/tmp/tflearn_logs/

通过tensorboard查看准确率变化以及loss变化,上图是跑了10个epoch的结果。

tflearn alexnet iter 10的更多相关文章

  1. 神经网络的结构汇总——tflearn

    一些先进的网络结构: # https://github.com/tflearn/tflearn/blob/master/examples/images/highway_dnn.py # -*- cod ...

  2. TFLearn构建神经网络

    TFLearn构建神经网络 Building the network TFLearn lets you build the network by defining the layers. Input ...

  3. TFLearn 与 Tensorflow 一起使用

    好用的不是一点点..=-=.. import tensorflow as tf import tflearn import tflearn.datasets.mnist as mnist # Usin ...

  4. 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...

  5. tflearn 保存模型重新训练

    from:https://stackoverflow.com/questions/41616292/how-to-load-and-retrain-tflean-model This is to cr ...

  6. tflearn mnist 使用MLP 全连接网络一般都会加dropout哇

    # -*- coding: utf-8 -*- """ Deep Neural Network for MNIST dataset classification task ...

  7. 学过 C++ 的你,不得不知的这 10 条细节!

    每日一句英语学习,每天进步一点点: “Action may not always bring happiness; but there is no happiness without action.” ...

  8. 检测用户命令序列异常——使用LSTM分类算法【使用朴素贝叶斯,类似垃圾邮件分类的做法也可以,将命令序列看成是垃圾邮件】

    通过 搜集 Linux 服务器 的 bash 操作 日志, 通过 训练 识别 出 特定 用户 的 操作 习惯, 然后 进一步 识别 出 异常 操作 行为. 使用 SEA 数据 集 涵盖 70 多个 U ...

  9. 几个小实践带你快速上手MindSpore

    摘要:本文将带大家通过几个小实践快速上手MindSpore,其中包括MindSpore端边云统一格式及华为智慧终端背后的黑科技. MindSpore介绍 MindSpore是一种适用于端边云场景的新型 ...

随机推荐

  1. 如何在网页中浏览和编辑DWG文件 梦想CAD控件

    如何在网页中浏览和编辑DWG文件 梦想CAD控件 www.mxdraw.com 梦想绘图控件5.2  是国内最强,最专业的CAD开发组件(控件),不需要AutoCAD就能独立运行.控件使用VC 201 ...

  2. 02网页<body></body>常用标记及属性

    网页<body></body>常用标记及属性 <body></body>标记表示的是在整个浏览器内容框架中显示的部分. text属性用于控制HTML文档 ...

  3. Controller传值到前端页面的几种方式

    一丶追加字符串传值 #region 02-追加字符串传值 /// <summary> /// 02-追加字符串传值 /// </summary> /// <returns ...

  4. 【阶梯报告】洛谷P3391【模板】文艺平衡树 splay

    [阶梯报告]洛谷P3391[模板]文艺平衡树 splay 题目链接在这里[链接](https://www.luogu.org/problemnew/show/P3391)最近在学习splay,终于做对 ...

  5. Re0:DP学习之路 饭卡 HDU - 2546

    解法 01背包变式,首先贪心的想一下如果要保证余额最小那么就需要用相减后最小的钱减去之前最大的价格,且得保证这个钱在5元以上 对于寻找如何减最多能包含在5元以上,这里用01背包 我们把价钱看做体积装进 ...

  6. Linux 中设置 MySQL 字符集为 UTF-8

    (1)查看 MySQL 字符集 登录 mysql:mysql -u root -p 查询 mysql 字符集:mysql> show variables like 'chara%'; 说明:将 ...

  7. MySql报Packet for query is too large错误

    mysql中执行sql的时候报以下错误:Packet for query is too large (1354 > 1024) 原因是mysql一次接收的报文太长,需要调整服务器参数max_al ...

  8. HTML-js 压缩上传的图片方法(默认上传的是file文件)

    //压缩图片方法 function compressImg(file,callback){ var src; var fileSize = parseFloat(parseInt(file['size ...

  9. IDLE in Python (Ubuntu)

    To lauch IDLE in the Current Woking Directory >>> usr/bin/idle3 Alt + n  # next command Alt ...

  10. CTSC2018 Day2T1 Juice混合果汁

    [题解] 在考场上A掉的题. 把美味度排个序,然后按照价格p为权值建立主席树,把每个果汁按照拍好的顺序添加进去.主席树上维护总升数cnt以及总价格sum.对于每个询问,我们二分一个美味值,check的 ...