罗大神说这题很简单,,,,然而我着实写的很难过。。。


题目链接:

http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110495#problem/K

题意:

给定n个人对罪犯的d值和p值,从中选m个人使得abs(sum(d)−sum(p))最小,如果有多种情况则输出sum(p)+sum(d)最大的情况,并升序输出选择的人的编号。

分析:

这题是既要考虑差又要考虑和。还是绝对值最小。。刚看见有点懵逼。

其实不方,这题d和p最大只有20,m最大又只有20,就是说差的绝对值最大只有20 * 20,

那么我们设dp[i][j]为已经选出i个人,sum(p)−sum(d)为j的最大sum(p)+sum(d)。dp[i][j]=−1 表示这个状态无法达到。

那么问题来了,绝对值怎么处理,如果sum(p)−sum(d)小于0怎么办。。。

我们知道差的绝对值最大为20 * 20,那么我们给每个差都加上20 * 20 ,保证j大于等于0,这样就相当于以20 * 20 为原点,最终只要找到距离20 * 20 最近的dp值大于等于0的点就好了。。

想到这里就差不多了。。

很容易得到状态转移方程。

对于每个i和j的状态枚举给定的n个人,注意判断之前当前这个人之前是否出现过。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define sa(a) scanf("%d", &a)
#define sal(a) scanf("%I64d", &a)
const int maxn = 1000 + 5, maxm = 200 + 5, INF = 0x3f3f3f3f;
int p[maxm], d[maxm];
struct DP{int a; int now;};
DP dp[20 + 5][maxn];
int tt[maxn];
int cnt;
void output(int he, int ans)
{
if(he == 0) return;
int index = dp[he][ans].now;
tt[he--] = index;
output(he, ans - p[index] + d[index]);
}
bool vis(int i, int j, int k)
{
while(i >= 0){
int index = dp[i][j].now;
if(index == k) return true;
i--;
j -= p[index] - d[index];
}
return false;
}
int main (void)
{
int n, m;
int cnt = 1;
while(scanf("%d%d", &n, &m) && n + m){
for(int i = 0; i < n; i++){
sa(p[i]); sa(d[i]);
}
int t = m * 20;
for(int i = 0; i <= m; i++){
for(int j = 0; j <= 2 * t; j++){
dp[i][j].a = -1;
dp[i][j].now = -1;
}
}
dp[0][t].a = 0;
for(int i = 0; i < m; i++){
for(int j = 0; j <= t * 2; j++){
if(dp[i][j].a < 0) continue;//状态无法到达
for(int k = 0; k < n; k++){
if(dp[i][j].a + p[k] + d[k] > dp[i + 1][j + p[k] - d[k]].a){
if(vis(i, j, k)) continue;//之前出现过
dp[i + 1][j + p[k] - d[k]].a = dp[i][j].a + p[k] + d[k];
dp[i + 1][j + p[k] - d[k]].now = k;
}
}
}
}
int i = 0;
while(dp[m][t + i].a < 0 && dp[m][t - i].a < 0) i++;
int ans;
if(dp[m][t + i].a > dp[m][t - i].a) ans = t + i;
else ans = t - i;
printf("Jury #%d\n", cnt++);
printf("Best jury has value %d for prosecution and value %d for defence:\n",
(ans - t + dp[m][ans].a)/2, (dp[m][ans].a - ans + t)/2);
output(m, ans);
sort(tt + 1, tt + m + 1);
for(int i = 1; i <= m; i++)
printf(" %d%c", tt[i] + 1, i == m?'\n':' ');
printf("\n");
}
return 0;
}

POJ 1015 Jury Compromise【DP】的更多相关文章

  1. POJ 1015 Jury Compromise(dp坑)

    提议:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候选人,然后再从这n个人中选m人组成陪审团.选m人的办法是:控方和辩方会根据对候选 ...

  2. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  3. POJ 1015 Jury Compromise(双塔dp)

    Jury Compromise Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33737   Accepted: 9109 ...

  4. OpenJudge 2979 陪审团的人选 / Poj 1015 Jury Compromise

    1.链接地址: http://bailian.openjudge.cn/practice/2979 http://poj.org/problem?id=1015 2.题目: 总Time Limit: ...

  5. POJ 3280 Cheapest Palindrome【DP】

    题意:对一个字符串进行插入删除等操作使其变成一个回文串,但是对于每个字符的操作消耗是不同的.求最小消耗. 思路: 我们定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价.那么对于 ...

  6. poj1015 Jury Compromise【背包】

    Jury Compromise Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:32355   Accepted:8722   ...

  7. poj 1015 Jury Compromise(背包+方案输出)

    \(Jury Compromise\) \(solution:\) 这道题很有意思,它的状态设得很...奇怪.但是它的数据范围实在是太暴露了.虽然当时还是想了好久好久,出题人设了几个限制(首先要两个的 ...

  8. POJ 1015 Jury Compromise dp分组

    第一次做dp分组的问题,百度的~~ http://poj.org/problem?id=1015 题目大意:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑 ...

  9. poj 1015 Jury Compromise(背包变形dp)

    In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of ...

随机推荐

  1. ubuntu上部署windows开发的dotnet core程序

    目标:完成windows上开发的dotnet core程序部署至linux服务器上(Ubuntu 14.04) windows上开发dotnet core很简单,安装好VS2017,建立相关类型的项目 ...

  2. 跟随鼠标指针跑的div拖拽效果

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  3. dmesg -检测和控制内核环缓冲

    NAME dmesg - print or control the kernel ring buffer 总览 dmesg [ -c ] [ -n 级别 ] [ -s 缓冲区大小 ] 描述 dmesg ...

  4. 解决margin塌陷问题

    父元素添加: border: 1px solid transparent; 或者 over-flow:hidden;

  5. python 与

    python的与运算是 and &表示的是位运算 c++则是& 和 &&

  6. 如何移除不再插入Windows设备的信息

    Howto: Remove devices from Windows that are not connected to the system anymore 如何移除不再插入Windows设备的信息 ...

  7. jsp公共头信息的抽取(相对路径的修改)

    1,抽取出的公共头信息 <%@ page language="java" contentType="text/html; charset=UTF-8" p ...

  8. Piston Pump Manufacturers - Mobile Cartridge Piston Pump: Advantages

    The    Piston Pump Manufacturers   states that the operation of any piston pump is based on the rela ...

  9. Django reverse函数

    1.总urls.py内容如下: from django.contrib import admin from django.urls import path from django.conf.urls ...

  10. 「问题思考」python的递归中return返回none

    代码: #求最大公约数 def gcd(x,y): if x < y: swap = x x = y y = swap if x%y == 0: return y else: gcd(y,x%y ...