给出了序列A[1],A[2],…,A[N]。 (a[i]≤15007,1≤N≤50000)。查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j];x≤i≤j≤y}。 给定M个查询,程序必须输出这些查询的结果。

这就是一个最大子段和,用线段树就能直接搞掉

然后这里学习了一下一个叫做猫树的神奇东西->这里

能做到预处理之后查询$O(1)$

 //minamoto
#include<iostream>
#include<cstdio>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
void print(int x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=5e+;
int n,m,a[N],len,log[N],pos[N],p[][N],s[][N];
void build(int pp,int l,int r,int d){
if(l==r) return (void)(pos[l]=pp);
int mid=(l+r)>>,prep,sm;
p[d][mid]=s[d][mid]=sm=prep=a[mid];
if(sm<) sm=;
for(int i=mid-;i>=l;--i){
prep+=a[i],sm+=a[i];
s[d][i]=max(s[d][i+],prep),
p[d][i]=max(p[d][i+],sm);
if(sm<) sm=;
}
p[d][mid+]=s[d][mid+]=sm=prep=a[mid+];
if(sm<) sm=;
for(int i=mid+;i<=r;++i){
prep+=a[i],sm+=a[i];
s[d][i]=max(s[d][i-],prep),
p[d][i]=max(p[d][i-],sm);
if(sm<) sm=;
}
build(pp<<,l,mid,d+);
build(pp<<|,mid+,r,d+);
}
int query(int l,int r){
if(l==r) return a[l];
int d=log[pos[l]]-log[pos[l]^pos[r]];
return max(max(p[d][l],p[d][r]),s[d][l]+s[d][r]);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();for(int i=;i<=n;++i) a[i]=read();
len=;while(len<n) len<<=;
for(int i=,l=len<<;i<=l;++i) log[i]=log[i>>]+;
build(,,len,);
m=read();
while(m--){
int l=read(),r=read();
print(query(l,r));
}
return Ot(),;
}

SP1043 GSS1 - Can you answer these queries I(猫树)的更多相关文章

  1. SP1043 GSS1 - Can you answer these queries I 线段树

    问题描述 LG-SP1043 题解 GSS 系列第一题. \(q\) 个询问,求 \([x,y]\) 的最大字段和. 线段树,维护 \([x,y]\) 的 \(lmax,rmax,sum,val\) ...

  2. 线段树 SP1043 GSS1 - Can you answer these queries I

    SP1043 GSS1 - Can you answer these queries I 题目描述 给出了序列A[1],A[2],-,A[N]. (a[i]≤15007,1≤N≤50000).查询定义 ...

  3. SPOJ GSS1 - Can you answer these queries I(线段树维护GSS)

    Can you answer these queries I SPOJ - GSS1 You are given a sequence A[1], A[2], -, A[N] . ( |A[i]| ≤ ...

  4. [SP1043] GSS1 - Can you answer these queries I

    传送门:>Here< 题意:求区间最大子段和 $N \leq 50000$ 包括多组询问(不需要支持修改) 解题思路 线段树的一道好题 我们可以考虑,如果一组数据全部都是正数,那么问题等同 ...

  5. SP1043 GSS1 - Can you answer these queries I(线段树,区间最大子段和(静态))

    题目描述 给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y} ...

  6. SPOJ GSS1 Can you answer these queries I[线段树]

    Description You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A q ...

  7. SPOJ GSS1 Can you answer these queries I ——线段树

    [题目分析] 线段树裸题. 注意update的操作,写结构体里好方便. 嗯,没了. [代码] #include <cstdio> #include <cstring> #inc ...

  8. [题解] SPOJ GSS1 - Can you answer these queries I

    [题解] SPOJ GSS1 - Can you answer these queries I · 题目大意 要求维护一段长度为 \(n\) 的静态序列的区间最大子段和. 有 \(m\) 次询问,每次 ...

  9. SPOJ GSS1_Can you answer these queries I(线段树区间合并)

    SPOJ GSS1_Can you answer these queries I(线段树区间合并) 标签(空格分隔): 线段树区间合并 题目链接 GSS1 - Can you answer these ...

随机推荐

  1. PHP_pear的安装和使用

    --------------            安装pear -------------- pear是PHP的扩展和应用程序库,包含了很多有用的类,安装好php5.0后,pear实际上并没有被安装 ...

  2. SPFA 算法

    百度百科: http://baike.baidu.com/link?url=O0QvxbOY8SVBjrIl6nF6EvMHSslgcEIxfXSoty5SbkA7QjbWZjTWARzwTQsKKb ...

  3. [bzoj1578][Usaco2009 Feb]Stock Market 股票市场_完全背包dp

    Stock Market 股票市场 bzoj-1578 Usaco-2009 Feb 题目大意:给定一个$S\times D$的大矩阵$T$,其中$T[i][j]$表示第i支股票第j天的价格.给定初始 ...

  4. BZOJ——2190: [SDOI2008]仪仗队

    思路: 我们将其所在的位置设为(0,0),那么如果存在一个点(x,y),且有gcd(x,y)=k(k!=1),那么点(x/k,y/k)一定会将(x,y)挡住.而如果k=1,那么点(x,y)就一定会被看 ...

  5. Spring基础入门(三)

    一.Spring的jdbcTemplate操作 (1)Spring是一站式框架,对于javaee三层,每一层都有解决技术. web层:springMVC service:spring的ioc dao层 ...

  6. JSP中自动刷新

    以下内容引用自http://wiki.jikexueyuan.com/project/jsp/auto-refresh.html: 细想一个显示在线比赛分数.股市状态或当前交易额的网页.对于所有这种类 ...

  7. python函数值传递还是引用传递

    c/c++中有值传递引用传递的区别.但是python中是值传递还是引用传递呢?首先看python中对变量的定义 "python中变量是指向某个内存的, 而内存中的内容是不可变的." ...

  8. ubuntu12.04+cuda6.0+opencv2.4.9

    更新了cuda之后,opencv的gpu模块又要重新编译了,这个地方有一个疑问,我对cuda6.0装了两次,第一次装好之后,没有配一个bumblebee,重装了cuda6.0之后,发现原来编译的ope ...

  9. ThinkPHP3.2 点击看不清刷新验证码

    欢迎使用Markdown编辑器写博客 baidu了一下.发现没有可用的源码,自己想了想,以下的方法可行. <!DOCTYPE html> <html> <head> ...

  10. html实现类似excel的复杂表格,及导出到excel

    1. excellentexport.js https://github.com/jmaister/excellentexport/tree/2.0.3 2.fiddle example  https ...