点分治,用一个mn[v]数组记录当前root下长为v的链的最小深度,每次新加一个儿子的时候都在原来儿子更新过的mn数组里更新ans(也就是查一下mn[m-dis[p]]+de[p])

这里注意更新和初始化的时候不能对整个mn操作,这样时间复杂度是错的,要开一个栈存一下更新了哪些点,只初始化这些点即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000005;
int n,m,h[N],cnt,rt,sz,si[N],mx[N],de[N],s[N],top,ans=1e9,mn[N],d[N],tot;
long long dis[N];
bool v[N];
struct qwe
{
int ne,to,va;
}e[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void gtrt(int u,int fa)
{
si[u]=1;
mx[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa&&!v[e[i].to])
{
gtrt(e[i].to,u);
si[u]+=si[e[i].to];
mx[u]=max(mx[u],si[e[i].to]);
}
mx[u]=max(mx[u],sz-si[u]);
if(mx[u]<mx[rt])
rt=u;
}
void gtde(int u,int fa)
{
de[u]=de[fa]+1;
if(dis[u]<=m)
s[++top]=u;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa&&!v[e[i].to])
{
dis[e[i].to]=dis[u]+e[i].va;
gtde(e[i].to,u);
}
}
void wk(int u)
{//cerr<<u<<endl;
tot=0;
v[u]=1;
mn[0]=0;
for(int i=h[u];i;i=e[i].ne)
if(!v[e[i].to])
{
top=0;
dis[e[i].to]=e[i].va;
gtde(e[i].to,0);
for(int j=1;j<=top;j++)
ans=min(ans,de[s[j]]+mn[m-dis[s[j]]]);
for(int j=1;j<=top;j++)
mn[dis[s[j]]]=min(mn[dis[s[j]]],de[s[j]]),d[++tot]=dis[s[j]];
}
ans=min(ans,mn[m]);
for(int i=1;i<=tot;i++)
mn[d[i]]=1e9;
for(int i=h[u];i;i=e[i].ne)
if(!v[e[i].to])
{
sz=si[e[i].to],rt=0;
gtrt(e[i].to,0);
wk(rt);
}
}
int main()
{
n=read(),m=read();
for(int i=1;i<n;i++)
{
int x=read()+1,y=read()+1,z=read();
add(x,y,z),add(y,x,z);
}
for(int i=0;i<=m;i++)
mn[i]=1e9;
sz=mx[0]=n;
gtrt(1,0);
wk(rt);
printf("%d\n",ans==1e9?-1:ans);
return 0;
}

bzoj 2599: [IOI2011]Race【点分治】的更多相关文章

  1. BZOJ 2599: [IOI2011]Race( 点分治 )

    数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...

  2. bzoj 2599: [IOI2011]Race (点分治 本地过了就是过了.jpg)

    题面:(复制别人的...) Description 给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. Input 第一行 两个整数 n, k第二..n行 每行三个整数 表示一条无向边的 ...

  3. bzoj 2599 [IOI2011]Race 点分

    [IOI2011]Race Time Limit: 70 Sec  Memory Limit: 128 MBSubmit: 4768  Solved: 1393[Submit][Status][Dis ...

  4. bzoj 2599 [IOI2011]Race (点分治)

    [题意] 问树中长为k的路径中包含边数最少的路径所包含的边数. [思路] 统计经过根的路径.假设当前枚举到根的第S个子树,若x属于S子树,则有: ans<-dep[x]+min{ dep[y] ...

  5. BZOJ 2599 [IOI2011]Race【Tree,点分治】

    给出N(1 <= N <= 200000)个结点的树,求长度等于K(1 <= K <= 1000000)的路径的最小边数. 点分治,这道题目和POJ 2114很接近,2114是 ...

  6. 【BZOJ】2599: [IOI2011]Race 点分治

    [题意]给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000.注意点从0开始编号,无解输出-1. [算法]点分治 [题解] ...

  7. 【刷题】BZOJ 2599 [IOI2011]Race

    Description 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 Input 第一行 两个整数 n, k 第二 ...

  8. BZOJ 2599: [IOI2011]Race

    点分治,定权值,求另一关键字最小 不满足前缀加减性 可以按序遍历,用一数组$t[] 来维护路径为i的最小边数$ 再对于一个直系儿子对应的子树,先算距离求答案再更新$t数组,这样就不会重复$ #incl ...

  9. 2599: [IOI2011]Race

    2599: [IOI2011]Race 链接 分析 被memset卡... 点分治,对于重心,遍历子树,记录一个数组T[i],表示以重心为起点的长度为i的路径中最少的边数是多少.然后先遍历子树,更新答 ...

随机推荐

  1. Windows 8实用窍门系列:20.Windows 8中的GridView使用(二)和DataTemplateSelector

    在本文中所讲述内容的实例仍然沿用于上篇文章,有什么疑惑可以参考上篇文章. 一 GroupStyle 在GridView控件中我们可以对数据进行分组显示,通过对GridView的GroupStyle进行 ...

  2. sanic官方文档解析之Example(一)

    1,示例 这部的文档是简单的示例集合,它能够帮助你快速的启动应用大部分的应用,这些应用大多事分类的,并且提供给ini工作的连接代码: 1.1,基础示例 这部分示例集成了提供简单sanic简单的代码 单 ...

  3. archlinux yaourt安装 以及出错细节 database file for "archlinuxfr" does not exist.

    archlinux yaourt安装 但一直报错如下: :: Synchronizing package databases...      core is up to date extra is u ...

  4. Web 监听器

    什么事web 监听器? Servlet规范中定义的一种特殊类 用于监听ServletContext.HttpSession和ServletRequest等象的创建与销毁的事件 用监听域对象的属性发生修 ...

  5. Writing a Simple YARN Application 从hadoop生态抽出yarn ,单独使用yarn

    Apache Hadoop 2.9.1 – Hadoop: Writing YARN Applications https://hadoop.apache.org/docs/current/hadoo ...

  6. IMP-00009 And IMP-00028

    导出文件异常结束” 错误,google一下,发现可能有如下原因导致 1.imp的数据太大,没有写buffer和commit 2.两个数据库字符集不同 3.从低版本exp的dmp文件,向高版本imp 4 ...

  7. webservice client setTimeOut

    一:eclipse生成的client,基于axis client_sub.getOptions().setTimeOutInMilliSeconds(1000*60); client_sub表示一个客 ...

  8. Android:在子线程中更新UI的三种方式

    ①使用Activity中的runOnUiThread(Runnable) ②使用Handler中的post(Runnable) 在创建Handler对象时,必须先通过Context的getMainLo ...

  9. js中!~什么意思

    (function () { var names = []; return function (name) { addName(name); } function addName(name) { if ...

  10. mysql字符串的常用函数(截取和拼接)

    #截取字符串(先正序取2个,再倒序取1个)SELECT SUBSTRING_INDEX(SUBSTRING_INDEX('aaa-gg-cc-dd','-',2),'-',-1) #获取子表某个字段的 ...