1.某神犇Blog 学了三遍的 欧拉函数φ--DEADFISH7

2.我要做一些补充o(* ̄▽ ̄*)o

  $φ(1)=1$;

  公式有两种形式,一种有太多除法,实际可能会慢些。通用

  对于任意$n$>1,1~$n$中与$n$互质的数之和等于$n*φ(n)/2$。

  是积性函数。

  $sigma(d|n) φ(d)=n$。

代码实现

1°:朴素的质因数分解顺便求出

void init_phi()
{
int ans=n;
for(int i=;i<=sqrt(n);i++)
{
if(n%i==)
{
ans=ans/i*(i-);
while(n%i==) n/=i;
}
if(n>) ans=ans/n*(n-);
}
}

适用于单个查询的情况,但是效率有点低,$O(sqrt(n))$,嘤。

2°:线性筛素数,顺便把欧拉函数也整出来。(适用于递推,连续1~n)

在线性筛板子上稍加修改即可,复杂度$O(n)$。

void init_phi()
{
phi[]=;
for(int i=;i<=lim;i++)
{
if(v[i]==)
{
prime[++m]=i;
v[i]=i;
phi[i]=i-;
}
for(int j=;j<=m;j++)
{
if(prime[j]>v[i]||prime[j]>lim/i) break;
v[i*prime[j]]=prime[j];
phi[i*prime[j]]=phi[i]*(i%prime[j] ? prime[j]- :prime[j]);
}
}
}

例题 仪仗队

浅谈欧拉函数 By cellur925的更多相关文章

  1. 【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)

    向大(hei)佬(e)势力学(di)习(tou) Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪 ...

  2. P2158 [SDOI2008]仪仗队 && 欧拉函数

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  3. POJ_2480 Longge's problem【积性函数+欧拉函数的理解与应用】

    题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will ...

  4. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  5. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  6. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  7. COGS2531. [HZOI 2016]函数的美 打表+欧拉函数

    题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...

  8. poj2478 Farey Sequence (欧拉函数)

    Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...

  9. 51Nod-1136 欧拉函数

    51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制: ...

随机推荐

  1. Allegro改动shape网络节点

    使用Allegro时改动shape的网络节点方法: ①选择shape->Select Shape or Void/Cavity ②选择要改动的shape ③点击(...)改动网络节点的名字 ④改 ...

  2. 在OpenStack中绕过或停用security group (iptables)

    眼下.OpenStack中默认採用了security group的方式.用系统的iptables来过滤进入vm的流量.这个本意是为了安全,可是往往给调试和开发带来一些困扰. 因此,暂时性的禁用它能够排 ...

  3. eclipse新建android项目出现非常多错误

    如图所看到的: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvSGFycnlXZWFzbGV5/font/5a6L5L2T/fontsize/400/fil ...

  4. MYSQL使用inner join 进行 查询/删除/修改示例

    代码如下: --查询 SELECT tp.tp_id, tp.tpmc, tp.leveid, tp.tpdz, tp.jgm, tp.scsj, tp.pbzyid, tp.ksbfsj, tp.j ...

  5. DataFactory 5.6注册码

    一.DataFactory 5.6注册码 数据工厂5.6注册码如下,希望能帮助需求之人 AuthKey: 0-87093-23830-05141-17507 SiteMsg: FREELAND EVO ...

  6. mysql读写分离(主从复制)实现

    mysql主从复制 怎么安装mysql数据库,这里不说了,仅仅说它的主从复制.过程例如以下: 主从最好都是同一种系统比方都是linux,或者都是windows,当然混合着也是能够成功,不解释了 1.主 ...

  7. Codeforces Round #422 (Div. 2) B. Crossword solving 枚举

    B. Crossword solving     Erelong Leha was bored by calculating of the greatest common divisor of two ...

  8. VC FTP服务器程序分析(三)

    CControlSocket类的分析,CControlSocket类的内容比较多,为什么呢.因为通信控制命令的传输全部在这里,通信协议的多样也导致了协议解析的多样. 1.OnReceive  其大致说 ...

  9. HDU3085 Nightmare Ⅱ —— 双向BFS + 曼哈顿距离

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3085 Nightmare Ⅱ Time Limit: 2000/1000 MS (Java/Other ...

  10. POJ3126 Prime Path —— BFS + 素数表

    题目链接:http://poj.org/problem?id=3126 Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...