1.某神犇Blog 学了三遍的 欧拉函数φ--DEADFISH7

2.我要做一些补充o(* ̄▽ ̄*)o

  $φ(1)=1$;

  公式有两种形式,一种有太多除法,实际可能会慢些。通用

  对于任意$n$>1,1~$n$中与$n$互质的数之和等于$n*φ(n)/2$。

  是积性函数。

  $sigma(d|n) φ(d)=n$。

代码实现

1°:朴素的质因数分解顺便求出

void init_phi()
{
int ans=n;
for(int i=;i<=sqrt(n);i++)
{
if(n%i==)
{
ans=ans/i*(i-);
while(n%i==) n/=i;
}
if(n>) ans=ans/n*(n-);
}
}

适用于单个查询的情况,但是效率有点低,$O(sqrt(n))$,嘤。

2°:线性筛素数,顺便把欧拉函数也整出来。(适用于递推,连续1~n)

在线性筛板子上稍加修改即可,复杂度$O(n)$。

void init_phi()
{
phi[]=;
for(int i=;i<=lim;i++)
{
if(v[i]==)
{
prime[++m]=i;
v[i]=i;
phi[i]=i-;
}
for(int j=;j<=m;j++)
{
if(prime[j]>v[i]||prime[j]>lim/i) break;
v[i*prime[j]]=prime[j];
phi[i*prime[j]]=phi[i]*(i%prime[j] ? prime[j]- :prime[j]);
}
}
}

例题 仪仗队

浅谈欧拉函数 By cellur925的更多相关文章

  1. 【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)

    向大(hei)佬(e)势力学(di)习(tou) Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪 ...

  2. P2158 [SDOI2008]仪仗队 && 欧拉函数

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  3. POJ_2480 Longge's problem【积性函数+欧拉函数的理解与应用】

    题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will ...

  4. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  5. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  6. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  7. COGS2531. [HZOI 2016]函数的美 打表+欧拉函数

    题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...

  8. poj2478 Farey Sequence (欧拉函数)

    Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...

  9. 51Nod-1136 欧拉函数

    51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制: ...

随机推荐

  1. Linux上Libevent的安装

    1.下载wget -O libevent-2.0.21-stable.tar.gz https://github.com/downloads/libevent/libevent/libevent-2. ...

  2. 如何理解pca和svd的关系?

    主成分分析和奇异值分解进行降维有何共同点? 矩阵的奇异值分解 当矩阵不是方阵,无法为其定义特征值与特征向量,可以用一个相似的概念来代替:奇异值. 通常用一种叫奇异值分解的算法来求取任意矩阵的奇异值: ...

  3. strsep strpbrk

    #include <stdio.h> #include <string.h> int main(void) { char s[] = "aa,bb,cc.11,22, ...

  4. linux led子系统(一)

    就像学编程第一个范例helloworld一样,学嵌入式,单片机.fpga之类的第一个范例就是点亮一盏灯.对于庞大的linux系统,当然可以编写一个字符设备驱动来实现我们需要的led灯,也可以直接利用g ...

  5. JAVA学习之 Model2中的Servlet与.NET一般处理程序傻傻分不清楚

    时隔多日,多日合适吗,应该是时隔多月.我又想起了一般处理程序.这都是由于近期在实现的DRP系统中经经常使用到jsp+servlet达到界面与逻辑的分离.servlet负责处理从jsp传回的信息:每当这 ...

  6. HDU 6040 Hints of sd0061 nth_element函数

    Hints of sd0061 Problem Description sd0061, the legend of Beihang University ACM-ICPC Team, retired ...

  7. SSM整理笔记3——配置解析

    github:https://github.com/lakeslove/SSM 项目的目录结构如下 首先,配置web.xml <?xml version="1.0" enco ...

  8. Yii2 behaviors中verbs access的一些理解

    public function behaviors() { return ArrayHelper::merge(parent::behaviors(), [ 'verbs' => [ 'clas ...

  9. struts2 过滤器

    Chain.doFilter的作用就是继续请求的传递,可传递给下一个filter也可传递给目标页面 如左侧传递给filter2,但fiter2使用上面或者下面的方法将倾情重定向到一个新的页面,而不再传 ...

  10. ActiveMQ P2P模型 观察者消费

    生餐者: package clc.active.listener; import org.apache.activemq.ActiveMQConnectionFactory; import org.t ...