bzoj 4823: [Cqoi2017]老C的方块【最大权闭合子图】
参考:https://www.cnblogs.com/neighthorn/p/6705785.html
并不是黑白染色而是三色染色(还有四色的,不过是一个意思
仔细观察一下不合法情况,可以发现都是特殊边两边有格子并且两个黑格子都在的时候黄蓝不能同在,所以(黄---黑)(黑---蓝)(黑---黑)都是最大权闭合子图中的依赖边
直接按照模型建就行,把黄蓝当成黑白染色。
……但是为什么不能用struct代替map呢QAQ
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
const int N=100005,mv[2][3][2]={-1,0,1,0,0,1,-1,0,1,0,0,-1},inf=1e9;
int c,r,n,s,t,le[N],h[N],cnt=1;
vector<int>v[N];
// struct que
// {
// int x,y;
// que(int X=0,int Y=0)
// {
// x=X,y=Y;
// }
// bool operator < (const que &a) const
// {
// return x>a.x;
// }
// };
// map<que,que>mp;
map< pair<int,int>,pair<int,int> > mp;
struct qwe
{
int ne,to,va;
}e[N*20];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{//cout<<u<<" "<<v<<" "<<w<<endl;
add(u,v,w);
add(v,u,0);
}
int bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(!f||u==t)
return f;
int us=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
int main()
{
c=read(),r=read(),n=read();
s=0,t=n+1;
for(int i=1;i<=n;i++)
{
int y=read(),x=read(),w=read();
// mp[que(x,y)]=que(i,w);
// v[x].push_back(y);
mp[make_pair(x,y)]=make_pair(i,w);
v[x].push_back(y);
}
for(int i=1;i<=r;i++)
sort(v[i].begin(),v[i].end());
for(int i=1;i<=r;i++)
for(int j=0;j<v[i].size();j++)
{
int x=i,y=v[i][j];
// if((x&1)&&y%4==1)
// {
// if(j<v[i].size()-1&&v[i][j+1]==y+1)
// ins(mp[que(x,y)].x,mp[que(x,y+1)].x,min(mp[que(x,y)].y,mp[que(x,y+1)].y));
// }
// else if((x&1)&&y%4==2)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[0][k][0],y+mv[0][k][1])].x,inf);
// }
// else if((x&1)==0&&y%4==0)
// {
// if(j>0&&v[i][j-1]==y-1)
// ins(mp[que(x,y)].x,mp[que(x,y-1)].x,min(mp[que(x,y)].y,mp[que(x,y-1)].y));
// }
// else if((x&1)==0&&y%4==3)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[1][k][0],y+mv[1][k][1])].x,inf);
// }
// else if(((x+y)&1)&&(x&1))
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[0][k][0],y+mv[0][k][1])].x,inf);
// ins(s,mp[que(x,y)].x,mp[que(x,y)].y);
// }
// else if((x&1)&&((x+y)&1)==0)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
// ins(mp[que(x+mv[1][k][0],y+mv[1][k][1])].x,mp[que(x,y)].x,inf);
// ins(mp[que(x,y)].x,t,mp[que(x,y)].y);
// }
// else if(((x+y)&1)&&(x&1)==0)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[1][k][0],y+mv[1][k][1])].x,inf);
// ins(s,mp[que(x,y)].x,mp[que(x,y)].y);
// }
// else
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
// ins(mp[que(x+mv[0][k][0],y+mv[0][k][1])].x,mp[que(x,y)].x,inf);
// ins(mp[que(x,y)].x,t,mp[que(x,y)].y);
// }
if((x&1)&&y%4==1)
{
if(j<v[i].size()-1&&v[i][j+1]==y+1)
ins(mp[make_pair(x,y)].first,mp[make_pair(x,y+1)].first,min(mp[make_pair(x,y)].second,mp[make_pair(x,y+1)].second));
}
else if((x&1)&&y%4==2)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,inf);
}
else if((x&1)==0&&y%4==0)
{
if(j>0&&v[i][j-1]==y-1)
ins(mp[make_pair(x,y)].first,mp[make_pair(x,y-1)].first,min(mp[make_pair(x,y)].second,mp[make_pair(x,y-1)].second));
}
else if((x&1)==0&&y%4==3)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,inf);
}
else if(((x+y)&1)&&(x&1))
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,inf);
ins(s,mp[make_pair(x,y)].first,mp[make_pair(x,y)].second);
}
else if((x&1)&&((x+y)&1)==0)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
ins(mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,mp[make_pair(x,y)].first,inf);
ins(mp[make_pair(x,y)].first,t,mp[make_pair(x,y)].second);
}
else if(((x+y)&1)&&(x&1)==0)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,inf);
ins(s,mp[make_pair(x,y)].first,mp[make_pair(x,y)].second);
}
else
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
ins(mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,mp[make_pair(x,y)].first,inf);
ins(mp[make_pair(x,y)].first,t,mp[make_pair(x,y)].second);
}
}
printf("%d\n",dinic());
return 0;
}
bzoj 4823: [Cqoi2017]老C的方块【最大权闭合子图】的更多相关文章
- bzoj 4823: [Cqoi2017]老C的方块 [最小割]
4823: [Cqoi2017]老C的方块 题意: 鬼畜方块游戏不解释... 有些特殊边,有些四个方块组成的图形,方块有代价,删掉一些方块使得没有图形,最小化代价. 比较明显的最小割,一个图形中必须删 ...
- bzoj 4823 [Cqoi2017]老C的方块——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4823 一个不合法方案其实就是蓝线的两边格子一定选.剩下两部分四相邻格子里各选一个. 所以这个 ...
- BZOJ 4823: [Cqoi2017]老C的方块
分析: 我觉得我的网络流白学了...QAQ... 其实数据范围本是无法用网络流跑过去的,然而出题者想让他跑过去,也就跑过去了... 看到题目其实感觉很麻烦,不知道从哪里入手,那么仔细观察所给出的有用信 ...
- BZOJ 4823 [Cqoi2017]老C的方块 ——网络流
lrd的题解:http://www.cnblogs.com/liu-runda/p/6695139.html 我还是太菜了.以后遇到这种题目应该分析分析性质的. 网络流复杂度真是$O(玄学)$ #in ...
- BZOJ.1312.[Neerc2006]Hard Life(分数规划 最大权闭合子图)
BZOJ 最大密度子图. 二分答案\(x\),转为求是否存在方案满足:\(边数-x*点数\geq 0\). 选一条边就必须选两个点,所以可以转成最大权闭合子图.边有\(1\)的正权,点有\(x\)的负 ...
- [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...
- BZOJ.1497.[NOI2006]最大获利(最小割 最大权闭合子图Dinic)
题目链接 //裸最大权闭合子图... #include<cstdio> #include<cctype> #include<algorithm> #define g ...
- bzoj 1565 [NOI2009]植物大战僵尸【tarjan+最大权闭合子图】
一上来以为是裸的最大权闭合子图,上来就dinic -然后没过样例.不得不说样例还是非常良心的给了一个强连通分量,要不然就WA的生活不能自理了 然后注意到有一种特殊情况:每个植物向他保护的植物连边(包括 ...
- bzoj4823: [Cqoi2017]老C的方块(最小割)
4823: [Cqoi2017]老C的方块 题目:传送门 题解: 毒瘤题ORZ.... 太菜了看出来是最小割啥边都不会建...狂%大佬强强强 黑白染色?不!是四个色一起染,四层图跑最小割... 很 ...
随机推荐
- hdu1875kruskal简单应用。
标记是dificulty 2,水,开始kruskal时练手题,只需开始时数据处理下,不符合要求的边不要,要理解并查集和Kruskal,就简单了,判断下是否联通图,(只需在记加入有效边时候统计连通分支数 ...
- c++ 高性能日志库(muduo_AsyncLogging)
c++ 高性能日志库(muduo_AsyncLogging) 实现一个高效的网络日志库要解决那些问题? 首先明确一下问题的模型,这是一个典型的多生产者 单消费者问题,对于前端的日志库使用者来说,应该做 ...
- 动态规划:Ignatius and the Princess IV
#include<stdio.h> #include<string.h> #include<math.h> int main() { _int64 n,a; whi ...
- Partition List(链表的插入和删除操作,找前驱节点)
Given a linked list and a value x, partition it such that all nodes less than x come before nodes gr ...
- HDU 1244 【DP】
题意: 中文. 思路: 先初步处理,用give-take求出每个城市剩的钱. 求解问题转化成使得和不小于0的最长连续字串. 枚举起点,然后当该起点加的和为负时开始枚举下一起点.(这个状态的转移) 2W ...
- IntelliJ IDEA14.0.3+Maven+SpringMVC+Spring+Hibernate光速构建Java权限管理系统(三)
注册登录 --利用简单的编写注册登录系统来打通从前端到后台的数据传输路径. 一.建立数据库.基本表 基本环境:mysql5,7.Navicat for MySQL11.0.9企业版. 我们在本地MyS ...
- JavaScript Prototype in Plain Language
非常好的文章: http://javascriptissexy.com/javascript-prototype-in-plain-detailed-language/ jan. 25 2013 14 ...
- 基于RTP的h.264视频传输系统设计(一)
一.H.264 的层次介绍 H.264 定义三个层次,每一个层次支持一组特定的编码功能.而且按照各个层次指定所指定的功能.基础层次(baselineprofile)支持I 帧和 P 帧[1]的帧内和帧 ...
- vux tabbar 组件
1.App.vue <!-- 入口文件 --> <template> <div id="app"> <!-- 视图层 --> < ...
- 将C++的标识符转成OC的标识符
3.将C++的标识符转成OC的标识符 C++的标识符和OC一样由数字字母下划线组成.打头的不是数字.当标识符超过一个单词, C++採用全字母小写.单词间用下划线连接的书写规范,如: bei_jing ...