ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer
传送门:https://nanti.jisuanke.com/t/31462
本题是一个树上的问题:结点间路径问题。
给定一个有N×M个结点的网格,并给出结点间建立墙(即拆除边)的代价。花费最小的代价,使得每一对结点之间的路径唯一。给出Q次询问:每次询问一对结点的路径长度。
每一对结点之间存在路径,则图是连通的;路径唯一,则图是无环的。于是拆除边后的图是原图的一棵生成树。为使得拆除的代价尽可能小,这棵生成树应是最大生成树。通过Kruskal算法,可以求解最大生成树。
之后,即是询问树结点对的路径长度。这个问题可以通过LCA算法求解。
设结点u、v的LCA为结点k,即k=LCA(u,v),则dis(u,v)=dep[u]+dep[v]-2*dep[k]。此处通过倍增实现LCA。
参考程序如下:
#include <bits/stdc++.h>
using namespace std; #define MAX_N 300005 priority_queue<pair<int, pair<int, int> > > edge;
vector<int> adj[MAX_N]; //Union Find.
int fa[MAX_N]; void init_dset(int n)
{
for (int i = ; i < n; i++) fa[i] = i;
} int find(int u)
{
if (fa[u] == u) return u;
return fa[u] = find(fa[u]);
} void unite(int u, int v)
{
int fu = find(u), fv = find(v);
if (fu == fv) return;
fa[fu] = fv;
} bool same(int u, int v)
{
return find(u) == find(v);
} //LCA.
int pre[][MAX_N]; //Ancestor Nodes.
int dep[MAX_N]; //Depth of Nodes. void dfs(int u, int p)
{
pre[][u] = p;
for (int v : adj[u]) {
if (v != p) {
dep[v] = dep[u] + ;
dfs(v, u);
}
}
} void init_lca(int n)
{
dfs(, -);
for (int k = ; k < ; k++) {
for (int v = ; v < n; v++) {
if (pre[k][v]) pre[k + ][v] = pre[k][pre[k][v]];
}
}
} int lca(int u, int v)
{
if (dep[u] > dep[v]) swap(u, v);
for (int k = ; k < ; k++) {
if ((dep[v] - dep[u]) & ( << k)) v = pre[k][v];
}
if (u == v) return u;
for (int k = ; k >= ; k--) {
if (pre[k][u] != pre[k][v]) {
u = pre[k][u];
v = pre[k][v];
}
}
return pre[][u];
} int main(void)
{
ios::sync_with_stdio(false);
int n, m;
cin >> n >> m;
for (int i = ; i < n; i++) {
for (int j = ; j < m; j++) {
string s, t;
int a, b;
cin >> s >> a >> t >> b;
if (s[] == 'D') {
int u = i * m + j;
int v = (i + ) * m + j;
edge.push(make_pair(a, make_pair(u, v)));
}
if (t[] == 'R') {
int u = i * m + j;
int v = i * m + j + ;
edge.push(make_pair(b, make_pair(u, v)));
}
}
}
init_dset(n * m);
while (!edge.empty()) {
auto e = edge.top();
edge.pop();
int u = e.second.first;
int v = e.second.second;
if (!same(u, v)) {
unite(u, v);
adj[u].push_back(v);
adj[v].push_back(u);
}
}
init_lca(n * m);
int q;
cin >> q;
while (q--) {
int a, b, c, d;
cin >> a >> b >> c >> d;
a--; b--; c--; d--;
int u = a * m + b;
int v = c * m + d;
int k = lca(u, v);
cout << dep[u] + dep[v] - * dep[k] << endl;
}
}
ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer的更多相关文章
- ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)
ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...
- ACM-ICPC 2018 徐州赛区网络预赛 J Maze Designer(最大生成树+LCA)
https://nanti.jisuanke.com/t/31462 题意 一个N*M的矩形,每个格点到其邻近点的边有其权值,需要构建出一个迷宫,使得构建迷宫的边权之和最小,之后Q次查询,每次给出两点 ...
- ACM-ICPC 2018 徐州赛区网络预赛 J Maze Designer(最大生成树,倍增lca)
https://nanti.jisuanke.com/t/31462 要求在一个矩形中任意选两个点都有唯一的通路,所以不会建多余的墙. 要求满足上述情况下,建墙的费用最小.理解题意后容易想到首先假设全 ...
- ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer 最大生成树 lca
大概就是要每两个点 只能有一条路径,并且约束,最短的边用来砌墙,那么反之的意思就是最大的边用来穿过 故最大生成树 生成以后 再用lca计算树上两点间的距离 (当然防止生成树是一条链,可以用树的重心作为 ...
- ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)
ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...
- 计蒜客 1460.Ryuji doesn't want to study-树状数组 or 线段树 (ACM-ICPC 2018 徐州赛区网络预赛 H)
H.Ryuji doesn't want to study 27.34% 1000ms 262144K Ryuji is not a good student, and he doesn't wa ...
- ACM-ICPC 2018 徐州赛区网络预赛 B(dp || 博弈(未完成)
传送门 题面: In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl n ...
- ACM-ICPC 2018 徐州赛区网络预赛 B. BE, GE or NE
In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl named &qu ...
- ACM-ICPC 2018 徐州赛区网络预赛 F. Features Track
262144K Morgana is learning computer vision, and he likes cats, too. One day he wants to find the ...
随机推荐
- 如何在linux 32位机器编译64位程序
编译64位程序,不一定要编译机器是64位的,但是32位机器默认安装的gcc编译环境还是不能用来编译64位程序. 编译64位程序,需要加上-m64编译器参数,默认安装的gcc已经支持该参数,但是缺少64 ...
- bzoj 2200: [Usaco2011 Jan]道路和航线【spfa】
直接跑最短路就行了--还不用判负环 #include<iostream> #include<cstdio> #include<queue> using namesp ...
- bzoj 1630: [Usaco2007 Demo]Ant Counting【dp】
满脑子组合数学,根本没想到dp 设f[i][j]为前i只蚂蚁,选出j只的方案数,初始状态为f[0][0]=1 转移为 \[ f[i][j]=\sum_{k=0}^{a[i]}f[i-1][j-k] \ ...
- [读书笔记2]《C语言嵌入式系统编程修炼》
第3章 屏幕操作 3.1 汉字处理 现在要解决的问题是,嵌入式系统中经常要使用的并非是完整的汉字库,往往只是需要提供数量有限的汉字供必要的显示功能.例如,一个微波炉的LCD上没有必要提供显示&qu ...
- DB 集中管理之探讨
DB 集中管理之探讨 1.监控的集中管理. 2.schema 变更的集中管理. 3.备份的集中管理. 4.补丁的集中管理. 5.架构的集中管理.
- 全面学习ORACLE Scheduler特性(8)Application抛出的Events
4.2 Application抛出的Events 首先要说明,这里所说的Application是个代词,即可以表示ORACLE数据库之外的应用程序,也可以是ORACLE数据库中的PROCEDURE等对 ...
- 【转】mysql中select用法
转自:http://blog.sina.com.cn/s/blog_a74f39a201013c3b.html 1.选择所有的记录 select * from table_name; 其中*表示表中的 ...
- 发生在升级OS X Yosemite后:修复各种开发环境
本博文最初发布于我的个人博客<Jerry的乐园> 终于还是忍不住升级了,促使我升级的原动力居然是Alfred的Yosemite theme居然比初始theme好看很多!在升级前就预想到我的 ...
- PendingIntent 显示通知
安卓显示通知 PendingIntent pendingIntent=PendingIntent.getActivity(Media.this,0, new Intent(Media.this,Med ...
- 解决TeamViewer的“现在无法捕捉画面。可能由于快速切换或者远程桌面断开或者最小化”问题
公司项目接近尾声,因为测试的需要,就在客户局域网内部搭建了几台虚拟机做为服务器给客户测试用. 虚拟机环境:win2008R2 原先在客户那边用远程登录虚拟机操作,但考虑到回公司后无法远程登录,所以安装 ...