poj 3090 && poj 2478(法雷级数,欧拉函数)
http://poj.org/problem?id=3090
法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]。
该题是法雷级数的变形吧,答案是2*f[i]-1。
#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL long long
#define _LL __int64
#define eps 1e-12
#define PI acos(-1.0)
using namespace std; const int maxn = 1100; int flag[maxn];
int prime[maxn];
int phi[maxn];
LL f[maxn]; void init()
{
memset(flag,0,sizeof(flag));
prime[0] = 0;
phi[1] = 1;
for(int i = 2; i < maxn; i++)
{
if(flag[i] == 0)
{
phi[i] = i-1;
prime[++prime[0]] = i;
}
for(int j = 1; j <= prime[0]&&prime[j]*i<maxn; j++)
{
flag[prime[j]*i] = 1;
if(i % prime[j] == 0)
phi[prime[j]*i] = phi[i] * prime[j];
else
phi[prime[j]*i] = phi[i] * (prime[j] - 1);
}
}
f[1] = 2;
for(int i = 2; i <= 1000; i++)
f[i] = f[i-1] + phi[i];
} int main()
{
init();
int test;
scanf("%d",&test);
for(int item = 1; item <= test; item++)
{
int x;
scanf("%d",&x);
printf("%d %d %lld\n",item,x,f[x]*2-1);
}
return 0;
}
id=2478">http://poj.org/problem? id=2478
更简单了,直接求法雷级数。基于素数筛的欧拉函数。
#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL long long
#define _LL __int64
#define eps 1e-12
#define PI acos(-1.0)
using namespace std; const int maxn = 1000010; int flag[maxn];
int prime[maxn];
int phi[maxn];
LL f[maxn]; void init()
{
memset(flag,0,sizeof(flag));
prime[0] = 0;
phi[1] = 1;
for(int i = 2; i < maxn; i++)
{
if(flag[i] == 0)
{
phi[i] = i-1;
prime[++prime[0]] = i;
}
for(int j = 1; j <= prime[0]&&prime[j]*i<maxn; j++)
{
flag[prime[j]*i] = 1;
if(i % prime[j] == 0)
phi[prime[j]*i] = phi[i] * prime[j];
else
phi[prime[j]*i] = phi[i] * (prime[j] - 1);
}
}
f[1] = 2;
for(int i = 2; i <= 1000010; i++)
f[i] = f[i-1] + phi[i];
} int main()
{
init();
int n;
while(~scanf("%d",&n)&&n)
{
printf("%lld\n",f[n]-2);
} return 0;
}
poj 3090 && poj 2478(法雷级数,欧拉函数)的更多相关文章
- POJ 3090 Visible Lattice Points | 其实是欧拉函数
题目: 给一个n,n的网格,点可以遮挡视线,问从0,0看能看到多少点 题解: 根据对称性,我们可以把网格按y=x为对称轴划分成两半,求一半的就可以了,可以想到的是应该每种斜率只能看到一个点 因为斜率表 ...
- 【POJ 2480】Longge's problem(欧拉函数)
题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 题解 欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数. gcd(i,n) ...
- 【POJ】2480 Longge's problem(欧拉函数)
题目 传送门:QWQ 分析 题意就是求∑gcd(i, N) 1<=i <=N.. 显然$ gcd(i,n) = x $时,必然$x|n$. 所以我们枚举一下n的约数,对于每个约数x,显然$ ...
- POJ2478 - Farey Sequence(法雷级数&&欧拉函数)
题目大意 直接看原文吧.... The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rat ...
- [ACM] POJ 2154 Color (Polya计数优化,欧拉函数)
Color Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7630 Accepted: 2507 Description ...
- 【poj 1284】Primitive Roots(数论--欧拉函数 求原根个数){费马小定理、欧拉定理}
题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^( ...
- poj 2478 Farey Sequence(欧拉函数是基于寻求筛法素数)
http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它主要的性质. 1.欧拉函数是求小于n且和n互质(包含1)的正整数的个数. 记为φ(n). 2. ...
- 欧拉函数 &【POJ 2478】欧拉筛法
通式: $\phi(x)=x(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n})$ 若n是质数p的k ...
- POJ 2478 Farey Sequence(欧拉函数前n项和)
A - Farey Sequence Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u ...
随机推荐
- AndroidStudio3.0 Canary 8注解报错Annotation processors must be explicitly declared now.
体验最新版AndroidStudio3. Canary 8的时候,发现之前项目的butter knife报错,用到注解的应该都会报错 Error:Execution failed for task ' ...
- Raspberry Pi开发之旅-控制蜂鸣器演奏乐曲
一.无源蜂鸣器和有源蜂鸣器 步进电机以及无源蜂鸣器这些都需要脉冲信号才能够驱动,这次尝试用GPIO的PWM接口驱动无源蜂鸣器弹奏一曲<一闪一闪亮晶晶>. 无源蜂鸣器: 无源内部没有震荡源, ...
- Codeforces_758_D_(区间dp)
D. Ability To Convert time limit per test 1 second memory limit per test 256 megabytes input standar ...
- 安卓app测试之流量监控
一.查看PID 通过ps命令查看:ps | grep packageName 案例:adb shell "ps | grep tv.danmaku.bili" adb shell ...
- LeetCode_16 3SumCloest
3Sum Closest Given an array nums of n integers and an integer target, find three integers in nums su ...
- 电子笔记本的思考(1)(ver0.2)
章节:电子笔记本的思考(1) 陶哲轩在<解题·成长·快乐——陶哲轩教你学数学>中着重强调,用纸笔来“缓存”思维对于数学解题的重要性: 用选定的符号表达你所知道的信息,并画一个示意图.把 ...
- Session共享实现方案调研
1.背景 随 着互联网的日益壮大,网站的pv和uv成线性或者指数倍的增加.单服务器单数据库早已经不能满足实际需求.目前大多数大型网站的服务器都采用了分布式服务 集群的部署方式,所谓集群,就是让一组计算 ...
- Linux 服务器 U盘安装(避免U盘启动)以及拔除U盘后无法引导系统
一.U盘制作 首先下载两个文件: · rhel-server-6.3-i386-boot.iso 启动镜像 · rhel-server-6.3-i386-dvd. ...
- Linux学习笔记记录(三)
压缩: 例如将/etc 目录压缩为压缩包tar -cjvf /aaa.tar.bz2 /etc tar -czvf /aaa.tar.gz /etc 解压: tar -xjv ...
- 微信小程序开发过程中tabbar页面显示的相关问题及解决办法!
在微信小程序的开发过程中如果有使用过tabbar的同学,我相信一定会遇到一些困扰.为什么有些时候代码中明明已经在app.json里面增加了tabbar,可以页面中就是不显示呢?可不可以有些页面显示ta ...