paddle中新增layer
Implement C++ Class
The C++ class of the layer implements the initialization, forward, and backward part of the layer. It needs to derive the base class paddle::Layer, and it needs to override the following functions:
- constructor and destructor.
initfunction. It is used to initialize the parameters and settings.forward. It implements the forward part of the layer.backward. It implements the backward part of the layer.prefetch. It is utilized to determine the rows corresponding parameter matrix to prefetch from parameter server. You do not need to override this function if your layer does not need remote sparse update. (most layers do not need to support remote sparse update)
头文件:
namespace paddle {
/**
* A layer has full connections to all neurons in the previous layer.
* It computes an inner product with a set of learned weights, and
* (optionally) adds biases.
*
* The config file api is fc_layer.
*/
class FullyConnectedLayer : public Layer {
protected:
WeightList weights_;
std::unique_ptr<Weight> biases_;
public:
explicit FullyConnectedLayer(const LayerConfig& config)
: Layer(config) {}
~FullyConnectedLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
Weight& getWeight(int idx) { return *weights_[idx]; }
void prefetch();
void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);
};
} // namespace paddle
It defines the parameters as class variables. We use Weight class as abstraction of parameters. It supports multi-thread update. The details of this class will be described in details in the implementations.
weights_is a list of weights for the transformation matrices. The current implementation can have more than one inputs. Thus, it has a list of weights. One weight corresponds to an input.biases_is a weight for the bias vector.
The fully connected layer does not have layer configuration hyper-parameters. If there are some layer hyper-parameters, a common practice is to store it in LayerConfig& config, and put it into a class variable in the constructor.
The following code snippet implements the init function.
- First, every
initfunction must call theinitfunction of the base classLayer::init(layerMap, parameterMap);. This statement will initialize the required variables and connections for each layer. - The it initializes all the weights matrices $W$ . The current implementation can have more than one inputs. Thus, it has a list of weights.(当前layer的输入可能来自多个layer,每个layer对应一个weight)
- Finally, it initializes the bias.
bool FullyConnectedLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap); /* initialize the weightList */
CHECK(inputLayers_.size() == parameters_.size());
for (size_t i = ; i < inputLayers_.size(); i++) {
// Option the parameters
// 输入层的神经元数目
size_t height = inputLayers_[i]->getSize();
// 当前层的神经元数目
size_t width = getSize(); // create a new weight
if (parameters_[i]->isSparse()) {
CHECK_LE(parameters_[i]->getSize(), width * height);
} else {
CHECK_EQ(parameters_[i]->getSize(), width * height);
}
Weight* w = new Weight(height, width, parameters_[i]); // append the new weight to the list
weights_.emplace_back(w);
} /* initialize biases_ */
if (biasParameter_.get() != NULL) {
biases_ = std::unique_ptr<Weight>(new Weight(, getSize(), biasParameter_));
} return true;
}
The implementation of the forward part has the following steps.
- Every layer must call
Layer::forward(passType);at the beginning of itsforwardfunction. - Then it allocates memory for the output using
reserveOutput(batchSize, size);. This step is necessary because we support the batches to have different batch sizes.reserveOutputwill change the size of the output accordingly. For the sake of efficiency, we will allocate new memory if we want to expand the matrix, but we will reuse the existing memory block if we want to shrink the matrix. - Then it computes $\sum_i W_i x + b$ using Matrix operations。 getInput(i).value retrieve the matrix of the i-th input. Each input is a $batchSize×dim$ matrix, where each row represents an single input in a batch. For a complete lists of supported matrix operations, please refer to paddle/math/Matrix.h and paddle/math/BaseMatrix.h.
- Finally it applies the activation function using
forwardActivation();. It will automatically applies the corresponding activation function specifies in the network configuration.
void FullyConnectedLayer::forward(PassType passType) {
Layer::forward(passType);
/* malloc memory for the output_ if necessary */
// batchSize是样本数,size是神经元数目
int batchSize = getInput().getBatchSize();
int size = getSize();
{
// Settup the size of the output.
reserveOutput(batchSize, size);
}
MatrixPtr outV = getOutputValue();
// Apply the the transformation matrix to each input.
for (size_t i = ; i != inputLayers_.size(); ++i) {
auto input = getInput(i);
CHECK(input.value) << "The input of 'fc' layer must be matrix";
i == ? outV->mul(input.value, weights_[i]->getW(), , )
: outV->mul(input.value, weights_[i]->getW(), , );
}
/* add the bias-vector */
if (biases_.get() != NULL) {
outV->addBias(*(biases_->getW()), );
}
/* activation */ {
forwardActivation();
}
}
The implementation of the backward part has the following steps.
backwardActivation()computes the gradients of the activation. The gradients will be multiplies in place to the gradients of the output, which can be retrieved usinggetOutputGrad().- Compute the gradients of bias. Notice that we an use
biases_->getWGrad()to get the gradient matrix of the corresponding parameter. After the gradient of one parameter is updated, it must callgetParameterPtr()->incUpdate(callback);. This is utilize for parameter update over multiple threads or multiple machines.
- Then it computes the gradients of the transformation matrices and inputs, and it calls
incUpdatefor the corresponding parameter. This gives the framework the chance to know whether it has gathered all the gradient to one parameter so that it can do some overlapping work (e.g., network communication)
void FullyConnectedLayer::backward(const UpdateCallback& callback) {
/* Do derivation for activations.*/ {
// 计算本层网络的激活关于本层网络参数的偏导
backwardActivation();
}
if (biases_ && biases_->getWGrad()) {
// 计算loss函数关于本层网络偏差的梯度
biases_->getWGrad()->collectBias(*getOutputGrad(), );
biases_->getParameterPtr()->incUpdate(callback);
}
bool syncFlag = hl_get_sync_flag();
for (size_t i = ; i != inputLayers_.size(); ++i) {
/* Calculate the W-gradient for the current layer */
if (weights_[i]->getWGrad()) {
MatrixPtr input_T = getInputValue(i)->getTranspose();
MatrixPtr oGrad = getOutputGrad();
{
weights_[i]->getWGrad()->mul(input_T, oGrad, , );
}
}
/* Calculate the input layers error */
MatrixPtr preGrad = getInputGrad(i);
if (NULL != preGrad) {
MatrixPtr weights_T = weights_[i]->getW()->getTranspose();
preGrad->mul(getOutputGrad(), weights_T, , );
}
{
weights_[i]->getParameterPtr()->incUpdate(callback);
}
}
}
The prefetch function specifies the rows that need to be fetched from parameter server during training. It is only useful for remote sparse training. In remote sparse training, the full parameter matrix is stored distributedly at the parameter server. When the layer uses a batch for training, only a subset of locations of the input is non-zero in this batch. Thus, this layer only needs the rows of the transformation matrix corresponding to the locations of these non-zero entries. The prefetch function specifies the ids of these rows.
Most of the layers do not need remote sparse training function. You do not need to override this function in this case.
void FullyConnectedLayer::prefetch() {
for (size_t i = ; i != inputLayers_.size(); ++i) {
auto* sparseParam =
dynamic_cast<SparsePrefetchRowCpuMatrix*>(weights_[i]->getW().get());
if (sparseParam) {
MatrixPtr input = getInputValue(i);
sparseParam->addRows(input);
}
}
}
Finally, you can use REGISTER_LAYER(fc, FullyConnectedLayer); to register the layer. fc is the identifier of the layer, and FullyConnectedLayer is the class name of the layer.
namespace paddle {
REGISTER_LAYER(fc, FullyConnectedLayer);
}
If the cpp file is put into paddle/gserver/layers, it will be automatically added to the compilation list.
Implement Python Wrapper
Implementing Python wrapper allows us to use the added layer in configuration files. All the Python wrappers are in file python/paddle/trainer/config_parser.py. An example of the Python wrapper for fully connected layer is listed below. It has the following steps:
- Use
@config_layer('fc')at the decorator for all the Python wrapper class.fcis the identifier of the layer. - Implements
__init__constructor function. -
- It first call
super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)base constructor function.FCLayeris the Python wrapper class name, andfcis the layer identifier name. They must be correct in order for the wrapper to work. - Then it computes the size and format (whether sparse) of each transformation matrix as well as the size.
- It first call
- Implements
@config_layer('fc')
class FCLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
bias=True,
**xargs):
super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
psize = self.config.size * input_layer.size
dims = [input_layer.size, self.config.size]
format = self.inputs[input_index].format
sparse = format == "csr" or format == "csc"
if sparse:
psize = self.inputs[input_index].nnz
self.create_input_parameter(input_index, psize, dims, sparse, format)
self.create_bias_parameter(bias, self.config.size)
In network configuration, the layer can be specifies using the following code snippets. The arguments of this class are:
nameis the name identifier of the layer instance.typeis the type of the layer, specified using layer identifier.sizeis the output size of the layer.biasspecifies whether this layer instance has bias.inputsspecifies a list of layer instance names as inputs.
Layer(
name = "fc1",
type = "fc",
size = ,
bias = True,
inputs = [Input("pool3")]
)
You are also recommended to implement a helper for the Python wrapper, which makes it easier to write models. You can refer to python/paddle/trainer_config_helpers/layers.py for examples.
http://doc.paddlepaddle.org/doc/howto/dev/new_layer_en.html
paddle源码解析:
http://wiki.babel.baidu.com/twiki/bin/view/Main/Paddle%E6%BA%90%E7%A0%81%E5%89%96%E6%9E%90--Layer#2.2 backward函数
http://wiki.baidu.com/pages/viewpage.action?pageId=353372756
paddle中新增layer的更多相关文章
- html5中新增的form表单属性
html5中新增两个表单属性,分别autocomplete和novalidate属性 1.autocomplete属性 该属性用于控制自动完成功能的开启和关闭.可以设置表单或者input元素,有两个属 ...
- Bash 4.4 中新增的 ${parameter@operator} 语法
Bash 4.4 中新增了一种 ${...} 语法,长这样:${parameter@operator}.根据不同的 operator,它展开后的值可能是 parameter 这个参数的值经过某种转换后 ...
- 在 .NET 4.0 中使用 .NET 4.5 中新增的特性(CallerMemberNameAttribute/CallerFilePathAttribute/CallerLineNumberAttribute)
介绍 标题中所说的三个特性 CallerMemberNameAttribute / CallerFilePathAttribute / CallerLineNumberAttribute 我们统称为调 ...
- [转]在NopCommerce中新增一个Domain Model的步骤
本文转自:http://www.cnblogs.com/aneasystone/archive/2012/08/27/2659183.html 在NopCommerce中新增一个Domain Mode ...
- S5中新增的Array方法详细说明
ES5中新增的Array方法详细说明 by zhangxinxu from http://www.zhangxinxu.com 本文地址:http://www.zhangxinxu.com/wor ...
- ES5中新增的Array方法详细说明
一.前言-索引 ES5中新增的不少东西,了解之对我们写JavaScript会有不少帮助,比如数组这块,我们可能就不需要去有板有眼地for循环了. ES5中新增了写数组方法,如下: forEach (j ...
- AJAX-----13HTML5中新增的API---FormData
FormData 表单数据对象,这是在HTML5中新增的一个API,他能以表单对象做参数,自动的将表单的数据打包,当ajax发送数据是,发送FormData内的表单数据给后端即可 <!DOCTY ...
- SQL Server 2008中新增的 1.变更数据捕获(CDC) 和 2.更改跟踪
概述 1.变更数据捕获(CDC) 每一次的数据操作都会记录下来 2.更改跟踪 只会记录最新一条记录 以上两种的区别: http://blog.csdn.n ...
- 2dx解析cocosbuilder中使用layer时的缺陷
2dx解析cocosbuilder中使用layer时的缺陷 cocos2d-x 3.7 cocosbuilder中的layer通常会用到触摸属性: 但是在2dx解析布局文件的时候,却很多属性都没解析: ...
随机推荐
- node.js---对文件操作
1. var fs=require('fs'); fs.open(path,flag,[mode],callback); path:要打开的文件路径 flags:要打开文件的方式 读/写 mode:设 ...
- 【转】怎么把本地项目和远程git仓库相连通
1. 打开在你的项目文件夹,输入下面的命令 git init 输完上面的命令,文件夹中会出现一个.git文件夹,如下图所示,其他的的文件也会出现蓝色小问号的标志 2. 添加所有文件 git add . ...
- u-boot顶层Makefile分析
1.u-boot制作命令 make forlinx_nand_ram256_config: make all; 2.顶层mkconfig分析,参考 U-BOOT顶层目录mkconfig分析 mkcon ...
- grep理解
http://www.cnblogs.com/ggjucheng/archive/2013/01/13/2856896.html部分摘录于此 grep与正规表达式 字符类 字符类的搜索:如果我想要搜 ...
- SVN如何避免冲突
在团队开发时,必然会用到代码版本控制工具,比如SVN. 但是多人共同维护同一份代码,当对同一文件进行增删时,就可能造成冲突,如何尽可能避免冲突相当重要. 首先,每次,新建任何文档,都会修改项目文件,所 ...
- django的rest framework框架——认证、权限、节流控制
一.登录认证示例 模拟用户登录,获取token,当用户访问订单或用户中心时,判断用户携带正确的token,则允许查看订单和用户信息,否则抛出异常: from django.conf.urls impo ...
- [转]python开发_shelve_完整版
''' python中的shelve模块,可以提供一些简单的数据操作 他和python中的dbm很相似. 区别如下: 都是以键值对的形式保存数据,不过在shelve模块中, key必须为字符串,而值可 ...
- Manthan, Codefest 17
A. Tom Riddle's Diary time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- 鼠标移动或者鼠标点击div消失不见排查
点击事件,导致某div或者容器样式隐藏,如果不能直接发现click事件绑定,那么首先排查哪些方法在控制div的样式, 然后看一看哪些方法在调用修改样式的方法. 然后再排查什么在调用修改样式的方法的方法 ...
- 公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法!
公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法! 先存档再说,以后实验报告还得打印上交. Miller-Rabin大素数判定对于学算法的人来讲不是什么难事,主要了解其原理. 先来灌 ...