题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705

一开始自己想了半天...

有了点思路:遍历 n 的因数 k,每个因数要预处理出 gcd 等于这个因数的数的个数 s[k];

预处理过程中还要去重:s[k] = (n-1) / k , s[k] -= s[2*k] + s[3*k] +......,&(*%$^&...

正要勇猛去写的时候还是点开了TJ,然后被自己的愚蠢暴击...

考虑 gcd ( n , m ) = k 的 m 的个数,发现 gcd ( n/k , m/k ) = 1,也就是 phi ( n/k )!!!

所以遍历因数,求它们的欧拉函数;

但范围太大了不能预处理,所以暴力每次求;

然而发现自己暴力也不会了,想了许多纯纯的暴力...

还是要用公式的啊... phi (x) = x * ∏ ( 1 - 1 / p[i] );

总之,就是一道关于欧拉函数的水题...

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
ll n,ans;
ll phi(ll x)
{
ll ret=x;
for(int i=;i*i<=x;i++)
if(x%i==)
{
ret=ret/i*(i-);//防止溢出
while(x%i==)x/=i;
}
if(x>) ret=ret/x*(x-);
return ret;
}
int main()
{
scanf("%lld",&n);
for(int i=;i*i<=n;i++)
if(n%i==)
{
ans+=i*phi(n/i);
if(i*i<n) ans+=n/i*phi(i);//别算2遍 sqrt(n)
}
printf("%lld",ans);
return ;
}

bzoj2705 [SDOI2012]Longge的问题——因数的更多相关文章

  1. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  2. BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  3. 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N).   Solut ...

  4. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  5. bzoj2705: [SDOI2012]Longge的问题 欧拉定理

    题意:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 题解:考虑n的所有因子,假设有因子k,那么对答案的贡献gcd(i,n)==k的个数即gcd(i/k,n/k)== ...

  6. 【数论】【枚举约数】【欧拉函数】bzoj2705 [SDOI2012]Longge的问题

    ∵∑gcd(i, N)(1<=i <=N) =k1*s(f1)+k2*s(k2)+...+km*s(km) {ki是N的约数,s(ki)是满足gcd(x,N)=ki(1<=x< ...

  7. [BZOJ2705][SDOI2012]Longge的问题 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 首先分析得题目所求$gcd(i,N)$的取值只可能是$N$的因子,则有$$Ans=\ ...

  8. 【bzoj2705】[SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2507  Solved: 1531[Submit][ ...

  9. BZOJ 2705: [SDOI2012]Longge的问题( 数论 )

    T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...

随机推荐

  1. ruby cloud9部署到heroku

    Cloud9网址:https://c9.io/ 使用github账号登陆,如果没有,现在github(https://github.com/)上注册一个用户,在进行登陆.

  2. 灰度直方图均衡化----python实现

    直方图均衡化是使用图像直方图进行对比度调整的图像处理的方法. 该方法通常会增加许多图像的整体对比度,尤其是当图像的可用数据由接近的对比度值表示时. 通过这种调整,强度可以更好地分布在直方图上. 这允许 ...

  3. 第二周习题O题

    Description   Given a graph (V,E) where V is a set of nodes and E is a set of arcs in VxV, and an or ...

  4. unity 菜单栏添加新菜单

    using UnityEngine; using System.Collections; using UnityEditor; public class jqmTools : CreateSphere ...

  5. ZOJ 2561 Order-Preserving Codes

    Order-Preserving Codes Time Limit: 5000ms Memory Limit: 65536KB This problem will be judged on ZJU. ...

  6. 添物不花钱学JavaEE(基础篇)- Java

    Java Java是一面向对象语言 Write Once Run Anywhere Designed for easy Web/Internet applications, Mobile Widesp ...

  7. Flask基础(3):session、flash、特殊装饰器、蓝图、路由正则匹配、上下文管理 & flask-session

    Session: Flask 默认将 session 以加密的形式放到了浏览器的 cookie 中 Flask 的 session 就是一个字典,字典有什么方法 session 就有什么方法 flas ...

  8. msp430入门编程11

    msp430中C语言的模块化头文件及实现11 msp430中C语言的模块化头文件及库文件12 msp430入门学习 msp430入门编程

  9. Linux下汇编语言学习笔记4 ---

    这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...

  10. Letter Combinations of a Phone Number(带for循环的DFS,组合问题,递归总结)

    Given a digit string, return all possible letter combinations that the number could represent. A map ...