Language:
Default
Desert King
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 22113   Accepted: 6187

Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate
ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way. 



After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary
channels to bring water to all the villages, which means there will be only one way to connect each village to the capital. 



His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel
between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that
each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line. 



As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the
position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

Source

题意:将n个村庄连在一起,告诉每一个村庄的三维坐标,村庄之间的距离为水平方向上的距离。花费为垂直方向上的高度差。求把村庄连接起来的最小的花费与长度之比为多少。

思路:经典的01分数规划问题,參考这位大神的解说应该就能明确了:http://www.cnblogs.com/Fatedayt/archive/2012/03/05/2380888.html

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; #define INF 0x3f3f3f3f
#define mod 1000000009
const int maxn = 1005;
const int MAXN = 2005;
const int MAXM = 200010;
const int N = 1005; double x[maxn],y[maxn],z[maxn];
double dist[maxn],mp[maxn][maxn],len[maxn][maxn],cost[maxn][maxn];
bool vis[maxn];
int pre[maxn];
int n; double Dis(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
} double prim(double r)
{
int i,j,now;
double mi,c=0,l=0;
for (i=0;i<n;i++)
{
dist[i]=INF;
for (j=0;j<n;j++)
{
mp[i][j]=cost[i][j]-r*len[i][j];
}
}
for (i=0;i<n;i++)
{
dist[i]=mp[i][0];
pre[i]=0;
vis[i]=false;
}
dist[0]=0;
vis[0]=true;
for (i=1;i<n;i++)
{
mi=INF;now=-1;
for (j=0;j<n;j++)
{
if (!vis[j]&&mi>dist[j])
{
mi=dist[j];
now=j;
}
}
if (now==-1) break;
vis[now]=true;
c+=cost[pre[now]][now];
l+=len[pre[now]][now];
for (j=0;j<n;j++)
{
if (!vis[j]&&dist[j]>mp[now][j])
{
dist[j]=mp[now][j];
pre[j]=now;
}
}
}
return c/l;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
int i,j;
while (sf(n))
{
if (n==0) break;
for (i=0;i<n;i++)
scanf("%lf%lf%lf",&x[i],&y[i],&z[i]);
for (i=0;i<n;i++)
{
for (j=0;j<n;j++)
{
len[i][j]=Dis(i,j);
cost[i][j]=fabs(z[i]-z[j]);
}
}
double r=0,rate; //r迭代初值为0
while (1)
{
rate=r;
r=prim(r);
if (fabs(r-rate)<eps) break;
}
printf("%.3f\n",r);
}
return 0;
}

Desert King (poj 2728 最优比率生成树 0-1分数规划)的更多相关文章

  1. poj 2728 最优比例生成树(01分数规划)模板

    /* 迭代法 :204Ms */ #include<stdio.h> #include<string.h> #include<math.h> #define N 1 ...

  2. [POJ2728] Desert King 解题报告(最优比率生成树)

    题目描述: David the Great has just become the king of a desert country. To win the respect of his people ...

  3. poj 2728 最优比率生成树

    思路:设sum(cost[i])/sum(dis[i])=r;那么要使r最小,也就是minsum(cost[i]-r*dis[i]);那么就以cost[i]-r*dis[i]为边权重新建边.当求和使得 ...

  4. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  5. POJ 2728 Desert King(最优比率生成树, 01分数规划)

    题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...

  6. Desert King POJ - 2728(最优比率生产树/(二分+生成树))

    David the Great has just become the king of a desert country. To win the respect of his people, he d ...

  7. poj 2728 Desert King (最优比率生成树)

    Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS   Memory Limit: 65536K       Descripti ...

  8. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  9. POJ 2728 Desert King(最优比率生成树 01分数规划)

    http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...

随机推荐

  1. chart 图片组件 生成后不能动态更新,需要销毁dom,从新载入 用 v-if 和 this.$nextTick(() => {

    <chart-box v-if="cbData1Bool" cb-text="基本概况" chartBoxSele="饼状图" :cb ...

  2. xshell通过xftp传输Windows文件到Linux:在输入put后,再摁 TAB 键,可显示当前文件夹的文件

    在输入put后,再摁 TAB 键,可显示当前文件夹的文件 sftp:/home/yan> put $Recycle.Bin\              BluestacksCN\         ...

  3. No-1.文件和目录

    文件和目录 01. 单用户操作系统和多用户操作系统(科普) 单用户操作系统:指一台计算机在同一时间 只能由一个用户 使用,一个用户独自享用系统的全部硬件和软件资源 Windows XP 之前的版本都是 ...

  4. laravel 集成 swagger插件

    原文链接:https://medium.com/@mahbubkabir/discovering-swagger-in-laravel-rest-apis-cb0271c8f2 1.composer ...

  5. (十九)python 3 内嵌函数和闭包

    内嵌函数:函数里又嵌套一个函数 def fun1(): print('fun1()在被调用') def fun2(): print('fun2()在被调用') fun2() 闭包: 闭包是函数里面嵌套 ...

  6. 牛客网 牛可乐发红包脱单ACM赛 B题 小a的旅行计划

    [题解] 题意其实就是把n个物品分成4个集合,其中三个集合不可以为空(只属于A.只属于B.AB的交),一个集合空或者非空都可以(不属于A也不属于B),问有多少种方案. 考虑容斥,4个集合都不为空的方案 ...

  7. 数据结构实验7:实现二分查找、二叉排序(查找)树和AVL树

    实验7 学号:      姓名:     专业: 7.1实验目的 (1) 掌握顺序表的查找方法,尤其是二分查找方法. (2) 掌握二叉排序树的建立及查找. 查找是软件设计中的最常用的运算,查找所涉及到 ...

  8. zoj 2001 Adding Reversed Numbers

    Adding Reversed Numbers Time Limit: 2 Seconds      Memory Limit: 65536 KB The Antique Comedians of M ...

  9. HDU4135容斥原理

    #include <cstdio> #include <string.h> #include <cmath> using namespace std; #defin ...

  10. Vim enhance part1

    NO1 .认识.命令 例 删除man.config中第1到30行的注释 1.光标移到#上,按下x删除 2.按下j将光标移到第二行#上,之后按下. 3.可以看到第2行的#也被删除了因为.就是重复上次命令 ...