Language:
Default
Desert King
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 22113   Accepted: 6187

Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate
ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way. 



After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary
channels to bring water to all the villages, which means there will be only one way to connect each village to the capital. 



His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel
between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that
each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line. 



As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the
position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

Source

题意:将n个村庄连在一起,告诉每一个村庄的三维坐标,村庄之间的距离为水平方向上的距离。花费为垂直方向上的高度差。求把村庄连接起来的最小的花费与长度之比为多少。

思路:经典的01分数规划问题,參考这位大神的解说应该就能明确了:http://www.cnblogs.com/Fatedayt/archive/2012/03/05/2380888.html

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; #define INF 0x3f3f3f3f
#define mod 1000000009
const int maxn = 1005;
const int MAXN = 2005;
const int MAXM = 200010;
const int N = 1005; double x[maxn],y[maxn],z[maxn];
double dist[maxn],mp[maxn][maxn],len[maxn][maxn],cost[maxn][maxn];
bool vis[maxn];
int pre[maxn];
int n; double Dis(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
} double prim(double r)
{
int i,j,now;
double mi,c=0,l=0;
for (i=0;i<n;i++)
{
dist[i]=INF;
for (j=0;j<n;j++)
{
mp[i][j]=cost[i][j]-r*len[i][j];
}
}
for (i=0;i<n;i++)
{
dist[i]=mp[i][0];
pre[i]=0;
vis[i]=false;
}
dist[0]=0;
vis[0]=true;
for (i=1;i<n;i++)
{
mi=INF;now=-1;
for (j=0;j<n;j++)
{
if (!vis[j]&&mi>dist[j])
{
mi=dist[j];
now=j;
}
}
if (now==-1) break;
vis[now]=true;
c+=cost[pre[now]][now];
l+=len[pre[now]][now];
for (j=0;j<n;j++)
{
if (!vis[j]&&dist[j]>mp[now][j])
{
dist[j]=mp[now][j];
pre[j]=now;
}
}
}
return c/l;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
int i,j;
while (sf(n))
{
if (n==0) break;
for (i=0;i<n;i++)
scanf("%lf%lf%lf",&x[i],&y[i],&z[i]);
for (i=0;i<n;i++)
{
for (j=0;j<n;j++)
{
len[i][j]=Dis(i,j);
cost[i][j]=fabs(z[i]-z[j]);
}
}
double r=0,rate; //r迭代初值为0
while (1)
{
rate=r;
r=prim(r);
if (fabs(r-rate)<eps) break;
}
printf("%.3f\n",r);
}
return 0;
}

Desert King (poj 2728 最优比率生成树 0-1分数规划)的更多相关文章

  1. poj 2728 最优比例生成树(01分数规划)模板

    /* 迭代法 :204Ms */ #include<stdio.h> #include<string.h> #include<math.h> #define N 1 ...

  2. [POJ2728] Desert King 解题报告(最优比率生成树)

    题目描述: David the Great has just become the king of a desert country. To win the respect of his people ...

  3. poj 2728 最优比率生成树

    思路:设sum(cost[i])/sum(dis[i])=r;那么要使r最小,也就是minsum(cost[i]-r*dis[i]);那么就以cost[i]-r*dis[i]为边权重新建边.当求和使得 ...

  4. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  5. POJ 2728 Desert King(最优比率生成树, 01分数规划)

    题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...

  6. Desert King POJ - 2728(最优比率生产树/(二分+生成树))

    David the Great has just become the king of a desert country. To win the respect of his people, he d ...

  7. poj 2728 Desert King (最优比率生成树)

    Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS   Memory Limit: 65536K       Descripti ...

  8. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  9. POJ 2728 Desert King(最优比率生成树 01分数规划)

    http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...

随机推荐

  1. iview table 勾选当前行代码 data key _checked: true

    给 data 项设置特殊 key _checked: true 可以默认选中当前项

  2. CNN完成mnist数据集手写数字识别

    # coding: utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data d ...

  3. Chrome浏览器商店安装的插件保存到本地

    Chrome自67版本开始,不能从第三方下载插件拖动安装,要么就是以前的方法安装修改为zip格式,会有报错(报错如下图),强迫症肯定忍不了报错的:按照网上说法,是第三方插件的压缩算法和Chrome商店 ...

  4. 第 6 章 Cinder - 061 - Boot from Volume

    Boot from Volume Volume 除了可以用作 instance 的数据盘,也可以作为启动盘(Bootable Volume). 打开 instance 的 launch 操作界面. 这 ...

  5. sublime text 3 安装Nodejs插件

    如题 1)集成Nodejs插件到sublime,地址:https://github.com/tanepiper/SublimeText-Nodejs2)解压zip文件, 并重命名文件夹“Nodejs” ...

  6. Elasticsearch 索引管理和内核探秘

    1. 创建索引,修改索引,删除索引 //创建索引 PUT /my_index { "settings": { , }, "mappings": { " ...

  7. 牛客网练习赛25 C 再编号

    链接:https://www.nowcoder.com/acm/contest/158/C来源:牛客网 定义对 a 的再编号为 a' ,满足 . 现在有 m 次询问,每次给定 x,t ,表示询问经过 ...

  8. Bone Collector II(01背包kth)

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

  9. HDU-1041-Computer Transformation,大数递推,水过~~

                                                                                  Computer Transformatio ...

  10. HDU-2509-Be the Winner,博弈题~~水过~~

    Be the Winner Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ht ...