Desert King (poj 2728 最优比率生成树 0-1分数规划)
Language:
Default
Desert King
Description
David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate
ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way. After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital. His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line. As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels. Input
There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the
position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed. Output
For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.
Sample Input 4 Sample Output 1.000 Source |
题意:将n个村庄连在一起,告诉每一个村庄的三维坐标,村庄之间的距离为水平方向上的距离。花费为垂直方向上的高度差。求把村庄连接起来的最小的花费与长度之比为多少。
思路:经典的01分数规划问题,參考这位大神的解说应该就能明确了:http://www.cnblogs.com/Fatedayt/archive/2012/03/05/2380888.html
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; #define INF 0x3f3f3f3f
#define mod 1000000009
const int maxn = 1005;
const int MAXN = 2005;
const int MAXM = 200010;
const int N = 1005; double x[maxn],y[maxn],z[maxn];
double dist[maxn],mp[maxn][maxn],len[maxn][maxn],cost[maxn][maxn];
bool vis[maxn];
int pre[maxn];
int n; double Dis(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
} double prim(double r)
{
int i,j,now;
double mi,c=0,l=0;
for (i=0;i<n;i++)
{
dist[i]=INF;
for (j=0;j<n;j++)
{
mp[i][j]=cost[i][j]-r*len[i][j];
}
}
for (i=0;i<n;i++)
{
dist[i]=mp[i][0];
pre[i]=0;
vis[i]=false;
}
dist[0]=0;
vis[0]=true;
for (i=1;i<n;i++)
{
mi=INF;now=-1;
for (j=0;j<n;j++)
{
if (!vis[j]&&mi>dist[j])
{
mi=dist[j];
now=j;
}
}
if (now==-1) break;
vis[now]=true;
c+=cost[pre[now]][now];
l+=len[pre[now]][now];
for (j=0;j<n;j++)
{
if (!vis[j]&&dist[j]>mp[now][j])
{
dist[j]=mp[now][j];
pre[j]=now;
}
}
}
return c/l;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
int i,j;
while (sf(n))
{
if (n==0) break;
for (i=0;i<n;i++)
scanf("%lf%lf%lf",&x[i],&y[i],&z[i]);
for (i=0;i<n;i++)
{
for (j=0;j<n;j++)
{
len[i][j]=Dis(i,j);
cost[i][j]=fabs(z[i]-z[j]);
}
}
double r=0,rate; //r迭代初值为0
while (1)
{
rate=r;
r=prim(r);
if (fabs(r-rate)<eps) break;
}
printf("%.3f\n",r);
}
return 0;
}
Desert King (poj 2728 最优比率生成树 0-1分数规划)的更多相关文章
- poj 2728 最优比例生成树(01分数规划)模板
/* 迭代法 :204Ms */ #include<stdio.h> #include<string.h> #include<math.h> #define N 1 ...
- [POJ2728] Desert King 解题报告(最优比率生成树)
题目描述: David the Great has just become the king of a desert country. To win the respect of his people ...
- poj 2728 最优比率生成树
思路:设sum(cost[i])/sum(dis[i])=r;那么要使r最小,也就是minsum(cost[i]-r*dis[i]);那么就以cost[i]-r*dis[i]为边权重新建边.当求和使得 ...
- POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)
题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...
- POJ 2728 Desert King(最优比率生成树, 01分数规划)
题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...
- Desert King POJ - 2728(最优比率生产树/(二分+生成树))
David the Great has just become the king of a desert country. To win the respect of his people, he d ...
- poj 2728 Desert King (最优比率生成树)
Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS Memory Limit: 65536K Descripti ...
- POJ 2728 Desert King 最优比率生成树
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 20978 Accepted: 5898 [Des ...
- POJ 2728 Desert King(最优比率生成树 01分数规划)
http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...
随机推荐
- DROP USER - 删除一个数据库用户帐号
SYNOPSIS DROP USER name DESCRIPTION 描述 DROP USER 从数据库中删除指定的用户. 它不删除数据库里此用户所有的表,视图或其他对象. 如果该用户拥有任何数据库 ...
- U盘制作安装盘后容量不能恢复的解决方案
diskpartlist diskselect disk 0/1 --看具体U盘是0还是1clean
- Java垃圾回收之老年代垃圾收集器
1.Serial Old 收集器(-XX: +UseSerialOldGC, 标记-整理算法) 1.1 单线程收集,进行垃圾收集时,必须暂停所有工作线程 1.2 简单高效,Client模式下默认的老年 ...
- 《编译原理》画 DAG 图与求优化后的 4 元式代码- 例题解析
<编译原理>画 DAG 图与求优化后的 4 元式代码- 例题解析 DAG 图(Directed Acylic Graph)无环路有向图 (一)基本块 基本块是指程序中一顺序执行的语句序列, ...
- POJ-1002-487-3279(字符串)
487-3279 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 309685 Accepted: 55292 Descripti ...
- 洛谷 P4073 [WC2013]平面图
#include<bits/stdc++.h> using namespace std; ; typedef long double LD; ; ); int dcmp(LD x){ret ...
- ARM Linux 3.x的设备树(Device Tree)(转)
http://blog.csdn.net/21cnbao/article/details/8457546
- 转载 js弹出框、对话框、提示框、弹窗总结
转载:https://blog.csdn.net/huileiforever/article/details/9464659 一.JS的三种最常见的对话框 //================== ...
- com.alibaba.fastjson.JSONException: For input string: "8200-12-31"
https://www.cnblogs.com/mengjinluohua/p/5544987.html https://samebug.io/exceptions/458113/com.alibab ...
- SQL中varchar和nvarchar的基本介绍及其区别
SQL中varchar和nvarchar的基本介绍及其区别 varchar(n) 长度为 n 个字节的可变长度且非 Unicode 的字符数据.n 必须是一个介于 1 和 8,000 之间的数值.存储 ...