彻底解析Android缓存机制——LruCache

关于Android的三级缓存,其中主要的就是内存缓存和硬盘缓存。这两种缓存机制的实现都应用到了LruCache算法,今天我们就从使用到源码解析,来彻底理解Android中的缓存机制。

一、Android中的缓存策略

一般来说,缓存策略主要包含缓存的添加、获取和删除这三类操作。如何添加和获取缓存这个比较好理解,那么为什么还要删除缓存呢?这是因为不管是内存缓存还是硬盘缓存,它们的缓存大小都是有限的。当缓存满了之后,再想其添加缓存,这个时候就需要删除一些旧的缓存并添加新的缓存。

因此LRU(Least Recently Used)缓存算法便应运而生,LRU是近期最少使用的算法,它的核心思想是当缓存满时,会优先淘汰那些近期最少使用的缓存对象。采用LRU算法的缓存有两种:LrhCache和DisLruCache,分别用于实现内存缓存和硬盘缓存,其核心思想都是LRU缓存算法。

二、LruCache的使用

LruCache是Android 3.1所提供的一个缓存类,所以在Android中可以直接使用LruCache实现内存缓存。而DisLruCache目前在Android 还不是Android SDK的一部分,但Android官方文档推荐使用该算法来实现硬盘缓存。

1.LruCache的介绍

LruCache是个泛型类,主要算法原理是把最近使用的对象用强引用(即我们平常使用的对象引用方式)存储在 LinkedHashMap 中。当缓存满时,把最近最少使用的对象从内存中移除,并提供了get和put方法来完成缓存的获取和添加操作。

2.LruCache的使用

LruCache的使用非常简单,我们就已图片缓存为例。

 int maxMemory = (int) (Runtime.getRuntime().totalMemory()/1024);
int cacheSize = maxMemory/8;
mMemoryCache = new LruCache<String,Bitmap>(cacheSize){
@Override
protected int sizeOf(String key, Bitmap value) {
return value.getRowBytes()*value.getHeight()/1024;
}
};

①设置LruCache缓存的大小,一般为当前进程可用容量的1/8。
②重写sizeOf方法,计算出要缓存的每张图片的大小。

注意:缓存的总容量和每个缓存对象的大小所用单位要一致。

三、LruCache的实现原理

LruCache的核心思想很好理解,就是要维护一个缓存对象列表,其中对象列表的排列方式是按照访问顺序实现的,即一直没访问的对象,将放在队尾,即将被淘汰。而最近访问的对象将放在队头,最后被淘汰。

如下图所示:

 

那么这个队列到底是由谁来维护的,前面已经介绍了是由LinkedHashMap来维护。

而LinkedHashMap是由数组+双向链表的数据结构来实现的。其中双向链表的结构可以实现访问顺序和插入顺序,使得LinkedHashMap中的<key,value>对按照一定顺序排列起来。

通过下面构造函数来指定LinkedHashMap中双向链表的结构是访问顺序还是插入顺序。

public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}

其中accessOrder设置为true则为访问顺序,为false,则为插入顺序。

以具体例子解释:
当设置为true时

public static final void main(String[] args) {
LinkedHashMap<Integer, Integer> map = new LinkedHashMap<>(0, 0.75f, true);
map.put(0, 0);
map.put(1, 1);
map.put(2, 2);
map.put(3, 3);
map.put(4, 4);
map.put(5, 5);
map.put(6, 6);
map.get(1);
map.get(2); for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
System.out.println(entry.getKey() + ":" + entry.getValue()); }
}

输出结果:

0:0
3:3
4:4
5:5
6:6
1:1
2:2

即最近访问的最后输出,那么这就正好满足的LRU缓存算法的思想。可见LruCache巧妙实现,就是利用了LinkedHashMap的这种数据结构。

下面我们在LruCache源码中具体看看,怎么应用LinkedHashMap来实现缓存的添加,获得和删除的。

 public LruCache(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
this.maxSize = maxSize;
this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
}

从LruCache的构造函数中可以看到正是用了LinkedHashMap的访问顺序。

put()方法

public final V put(K key, V value) {
//不可为空,否则抛出异常
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
}
V previous;
synchronized (this) {
//插入的缓存对象值加1
putCount++;
//增加已有缓存的大小
size += safeSizeOf(key, value);
//向map中加入缓存对象
previous = map.put(key, value);
//如果已有缓存对象,则缓存大小恢复到之前
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}
//entryRemoved()是个空方法,可以自行实现
if (previous != null) {
entryRemoved(false, key, previous, value);
}
//调整缓存大小(关键方法)
trimToSize(maxSize);
return previous;
}

可以看到put()方法并没有什么难点,重要的就是在添加过缓存对象后,调用 trimToSize()方法,来判断缓存是否已满,如果满了就要删除近期最少使用的算法。
trimToSize()方法

 public void trimToSize(int maxSize) {
//死循环
while (true) {
K key;
V value;
synchronized (this) {
//如果map为空并且缓存size不等于0或者缓存size小于0,抛出异常
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
}
//如果缓存大小size小于最大缓存,或者map为空,不需要再删除缓存对象,跳出循环
if (size <= maxSize || map.isEmpty()) {
break;
}
//迭代器获取第一个对象,即队尾的元素,近期最少访问的元素
Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
key = toEvict.getKey();
value = toEvict.getValue();
//删除该对象,并更新缓存大小
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
}
entryRemoved(true, key, value, null);
}
}

trimToSize()方法不断地删除LinkedHashMap中队尾的元素,即近期最少访问的,直到缓存大小小于最大值。

当调用LruCache的get()方法获取集合中的缓存对象时,就代表访问了一次该元素,将会更新队列,保持整个队列是按照访问顺序排序。这个更新过程就是在LinkedHashMap中的get()方法中完成的。

先看LruCache的get()方法

get()方法

public final V get(K key) {
//key为空抛出异常
if (key == null) {
throw new NullPointerException("key == null");
} V mapValue;
synchronized (this) {
//获取对应的缓存对象
//get()方法会实现将访问的元素更新到队列头部的功能
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
}

其中LinkedHashMap的get()方法如下:

public V get(Object key) {
LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
if (e == null)
return null;
//实现排序的关键方法
e.recordAccess(this);
return e.value;
}

调用recordAccess()方法如下:

 void recordAccess(HashMap<K,V> m) {
LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
//判断是否是访问排序
if (lm.accessOrder) {
lm.modCount++;
//删除此元素
remove();
//将此元素移动到队列的头部
addBefore(lm.header);
}
}

由此可见LruCache中维护了一个集合LinkedHashMap,该LinkedHashMap是以访问顺序排序的。当调用put()方法时,就会在结合中添加元素,并调用trimToSize()判断缓存是否已满,如果满了就用LinkedHashMap的迭代器删除队尾元素,即近期最少访问的元素。当调用get()方法访问缓存对象时,就会调用LinkedHashMap的get()方法获得对应集合元素,同时会更新该元素到队头。

以上便是LruCache实现的原理,理解了LinkedHashMap的数据结构就能理解整个原理。如果不懂,可以先看看LinkedHashMap的具体实现。

【转】彻底解析Android缓存机制——LruCache的更多相关文章

  1. Android缓存机制——LruCache

    概述 LruCache的核心原理就是对LinkedHashMap的有效利用,它的内部存在一个LinkedHashMap成员变量,值得注意的4个方法:构造方法.get.put.trimToSize LR ...

  2. 解析Android消息处理机制:Handler/Thread/Looper & MessageQueue

    解析Android消息处理机制 ——Handler/Thread/Looper & MessageQueue Keywords: Android Message HandlerThread L ...

  3. WEB请求过程(http解析,浏览器缓存机制,域名解析,cdn分发)

    概述 发起一个http请求的过程就是建立一个socket通信的过程. 我们可以模仿浏览器发起http请求,譬如用httpclient工具包,curl命令等方式. curl "http://w ...

  4. android缓存之Lrucache 和LinkedHashMap

    两者的区别 网上有很多人使用软引用加载图片的多 ,但是现在已经不再推荐使用这种方式了,(1)因为从 Android 2.3 (API Level 9)开始,垃圾回收器会更倾向于回收持有软引用或弱引用的 ...

  5. Android进阶:三、这一次,我们用最详细的方式解析Android消息机制的源码

    决定再写一次有关Handler的源码 Handler源码解析 一.创建Handler对象 使用handler最简单的方式:直接new一个Handler的对象 Handler handler = new ...

  6. Handler Looper源码解析(Android消息传递机制)

    Android的Handler类应该是常用到的,多用于线程间的通信,以及子线程发送消息通知UI线程刷新View等等.这里我主要总结下我对整个消息传递机制,包括Handler,Looper,Messag ...

  7. 史上最详细的Android消息机制源码解析

    本人只是Android菜鸡一个,写技术文章只是为了总结自己最近学习到的知识,从来不敢为人师,如果里面有不正确的地方请大家尽情指出,谢谢! 606页Android最新面试题含答案,有兴趣可以点击获取. ...

  8. Android 缓存

    1.Android缓存机制&一个缓存框架推荐 http://blog.csdn.net/shakespeare001/article/details/51695358 2.ASimpleCac ...

  9. 【腾讯Bugly干货分享】Android ListView与RecyclerView对比浅析--缓存机制

    本文来自于腾讯bugly开发者社区,非经作者同意,请勿转载,原文地址:http://dev.qq.com/topic/5811d3e3ab10c62013697408 作者:黄宁源 一,背景 Recy ...

随机推荐

  1. vue2实现自定义样式radio单选框

    先上效果 <div class="reply"> 主编已回复: <div class="radio-box" v-for="(ite ...

  2. codeforces 435 B. Pasha Maximizes 解题报告

    题目链接:http://codeforces.com/problemset/problem/435/B 题目意思:给出一个最多为18位的数,可以通过对相邻两个数字进行交换,最多交换 k 次,问交换 k ...

  3. UUIDUtils

    package com.cc.hkjc.util; import java.util.UUID; /** * 字符串工具类 *  * @author:匿名 *  */public class UUID ...

  4. 安卓开发eclipse如何导出项目

    安卓开发如何导出项目 方法/步骤   1 首先打开eclipse 2 选择file然后选择export 3 选择android application 4 点击next 5 选择项目browse可以更 ...

  5. Filter的基本配置

    1.<dispatcher></dispatcher>节点:指定过滤器所拦截的servlet容器调用资源的方式,有REQUEST,INCLUDE,FORWARD,ERROR,默 ...

  6. [yii2]urlmanger

    首先配置下nginx,确保可以不使用index.php来访问 server{ listen 8082; server_name yii2.dev; access_log logs/yii2.acces ...

  7. webpack 使用配置文件

    webpack入门     大多数项目会需要很复杂的设置,这就是为什么webpack要支持配置文件.这比在终端中输入大量命令要高效的多,所以让我们常见一个取代CLI选项方式的配置文件 新建 webpa ...

  8. 【旧文章搬运】Windows句柄表分配算法分析(一)

    原文发表于百度空间,2009-03-30========================================================================== 阅读提示: ...

  9. Hibernate中两种获取Session的方式

    转自:https://www.jb51.net/article/130309.htm Session:是应用程序与数据库之间的一个会话,是hibernate运作的中心,持久层操作的基础.对象的生命周期 ...

  10. 10.22~10.28一周经典题目整理(meeting,BZOJ4377,POJ3659)

    meeting:给正n边形每个点染上黑色或者白色,问有多少个同色的等腰三角形. 以正五边形为例这里将最上面的点作为顶点,得到若干对相等的腰 ,注意到以最上面的点作为顶点的等腰三角形的个数,等于颜色相等 ...