彻底解析Android缓存机制——LruCache

关于Android的三级缓存,其中主要的就是内存缓存和硬盘缓存。这两种缓存机制的实现都应用到了LruCache算法,今天我们就从使用到源码解析,来彻底理解Android中的缓存机制。

一、Android中的缓存策略

一般来说,缓存策略主要包含缓存的添加、获取和删除这三类操作。如何添加和获取缓存这个比较好理解,那么为什么还要删除缓存呢?这是因为不管是内存缓存还是硬盘缓存,它们的缓存大小都是有限的。当缓存满了之后,再想其添加缓存,这个时候就需要删除一些旧的缓存并添加新的缓存。

因此LRU(Least Recently Used)缓存算法便应运而生,LRU是近期最少使用的算法,它的核心思想是当缓存满时,会优先淘汰那些近期最少使用的缓存对象。采用LRU算法的缓存有两种:LrhCache和DisLruCache,分别用于实现内存缓存和硬盘缓存,其核心思想都是LRU缓存算法。

二、LruCache的使用

LruCache是Android 3.1所提供的一个缓存类,所以在Android中可以直接使用LruCache实现内存缓存。而DisLruCache目前在Android 还不是Android SDK的一部分,但Android官方文档推荐使用该算法来实现硬盘缓存。

1.LruCache的介绍

LruCache是个泛型类,主要算法原理是把最近使用的对象用强引用(即我们平常使用的对象引用方式)存储在 LinkedHashMap 中。当缓存满时,把最近最少使用的对象从内存中移除,并提供了get和put方法来完成缓存的获取和添加操作。

2.LruCache的使用

LruCache的使用非常简单,我们就已图片缓存为例。

 int maxMemory = (int) (Runtime.getRuntime().totalMemory()/1024);
int cacheSize = maxMemory/8;
mMemoryCache = new LruCache<String,Bitmap>(cacheSize){
@Override
protected int sizeOf(String key, Bitmap value) {
return value.getRowBytes()*value.getHeight()/1024;
}
};

①设置LruCache缓存的大小,一般为当前进程可用容量的1/8。
②重写sizeOf方法,计算出要缓存的每张图片的大小。

注意:缓存的总容量和每个缓存对象的大小所用单位要一致。

三、LruCache的实现原理

LruCache的核心思想很好理解,就是要维护一个缓存对象列表,其中对象列表的排列方式是按照访问顺序实现的,即一直没访问的对象,将放在队尾,即将被淘汰。而最近访问的对象将放在队头,最后被淘汰。

如下图所示:

 

那么这个队列到底是由谁来维护的,前面已经介绍了是由LinkedHashMap来维护。

而LinkedHashMap是由数组+双向链表的数据结构来实现的。其中双向链表的结构可以实现访问顺序和插入顺序,使得LinkedHashMap中的<key,value>对按照一定顺序排列起来。

通过下面构造函数来指定LinkedHashMap中双向链表的结构是访问顺序还是插入顺序。

public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}

其中accessOrder设置为true则为访问顺序,为false,则为插入顺序。

以具体例子解释:
当设置为true时

public static final void main(String[] args) {
LinkedHashMap<Integer, Integer> map = new LinkedHashMap<>(0, 0.75f, true);
map.put(0, 0);
map.put(1, 1);
map.put(2, 2);
map.put(3, 3);
map.put(4, 4);
map.put(5, 5);
map.put(6, 6);
map.get(1);
map.get(2); for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
System.out.println(entry.getKey() + ":" + entry.getValue()); }
}

输出结果:

0:0
3:3
4:4
5:5
6:6
1:1
2:2

即最近访问的最后输出,那么这就正好满足的LRU缓存算法的思想。可见LruCache巧妙实现,就是利用了LinkedHashMap的这种数据结构。

下面我们在LruCache源码中具体看看,怎么应用LinkedHashMap来实现缓存的添加,获得和删除的。

 public LruCache(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
this.maxSize = maxSize;
this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
}

从LruCache的构造函数中可以看到正是用了LinkedHashMap的访问顺序。

put()方法

public final V put(K key, V value) {
//不可为空,否则抛出异常
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
}
V previous;
synchronized (this) {
//插入的缓存对象值加1
putCount++;
//增加已有缓存的大小
size += safeSizeOf(key, value);
//向map中加入缓存对象
previous = map.put(key, value);
//如果已有缓存对象,则缓存大小恢复到之前
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}
//entryRemoved()是个空方法,可以自行实现
if (previous != null) {
entryRemoved(false, key, previous, value);
}
//调整缓存大小(关键方法)
trimToSize(maxSize);
return previous;
}

可以看到put()方法并没有什么难点,重要的就是在添加过缓存对象后,调用 trimToSize()方法,来判断缓存是否已满,如果满了就要删除近期最少使用的算法。
trimToSize()方法

 public void trimToSize(int maxSize) {
//死循环
while (true) {
K key;
V value;
synchronized (this) {
//如果map为空并且缓存size不等于0或者缓存size小于0,抛出异常
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
}
//如果缓存大小size小于最大缓存,或者map为空,不需要再删除缓存对象,跳出循环
if (size <= maxSize || map.isEmpty()) {
break;
}
//迭代器获取第一个对象,即队尾的元素,近期最少访问的元素
Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
key = toEvict.getKey();
value = toEvict.getValue();
//删除该对象,并更新缓存大小
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
}
entryRemoved(true, key, value, null);
}
}

trimToSize()方法不断地删除LinkedHashMap中队尾的元素,即近期最少访问的,直到缓存大小小于最大值。

当调用LruCache的get()方法获取集合中的缓存对象时,就代表访问了一次该元素,将会更新队列,保持整个队列是按照访问顺序排序。这个更新过程就是在LinkedHashMap中的get()方法中完成的。

先看LruCache的get()方法

get()方法

public final V get(K key) {
//key为空抛出异常
if (key == null) {
throw new NullPointerException("key == null");
} V mapValue;
synchronized (this) {
//获取对应的缓存对象
//get()方法会实现将访问的元素更新到队列头部的功能
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
}

其中LinkedHashMap的get()方法如下:

public V get(Object key) {
LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
if (e == null)
return null;
//实现排序的关键方法
e.recordAccess(this);
return e.value;
}

调用recordAccess()方法如下:

 void recordAccess(HashMap<K,V> m) {
LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
//判断是否是访问排序
if (lm.accessOrder) {
lm.modCount++;
//删除此元素
remove();
//将此元素移动到队列的头部
addBefore(lm.header);
}
}

由此可见LruCache中维护了一个集合LinkedHashMap,该LinkedHashMap是以访问顺序排序的。当调用put()方法时,就会在结合中添加元素,并调用trimToSize()判断缓存是否已满,如果满了就用LinkedHashMap的迭代器删除队尾元素,即近期最少访问的元素。当调用get()方法访问缓存对象时,就会调用LinkedHashMap的get()方法获得对应集合元素,同时会更新该元素到队头。

以上便是LruCache实现的原理,理解了LinkedHashMap的数据结构就能理解整个原理。如果不懂,可以先看看LinkedHashMap的具体实现。

【转】彻底解析Android缓存机制——LruCache的更多相关文章

  1. Android缓存机制——LruCache

    概述 LruCache的核心原理就是对LinkedHashMap的有效利用,它的内部存在一个LinkedHashMap成员变量,值得注意的4个方法:构造方法.get.put.trimToSize LR ...

  2. 解析Android消息处理机制:Handler/Thread/Looper & MessageQueue

    解析Android消息处理机制 ——Handler/Thread/Looper & MessageQueue Keywords: Android Message HandlerThread L ...

  3. WEB请求过程(http解析,浏览器缓存机制,域名解析,cdn分发)

    概述 发起一个http请求的过程就是建立一个socket通信的过程. 我们可以模仿浏览器发起http请求,譬如用httpclient工具包,curl命令等方式. curl "http://w ...

  4. android缓存之Lrucache 和LinkedHashMap

    两者的区别 网上有很多人使用软引用加载图片的多 ,但是现在已经不再推荐使用这种方式了,(1)因为从 Android 2.3 (API Level 9)开始,垃圾回收器会更倾向于回收持有软引用或弱引用的 ...

  5. Android进阶:三、这一次,我们用最详细的方式解析Android消息机制的源码

    决定再写一次有关Handler的源码 Handler源码解析 一.创建Handler对象 使用handler最简单的方式:直接new一个Handler的对象 Handler handler = new ...

  6. Handler Looper源码解析(Android消息传递机制)

    Android的Handler类应该是常用到的,多用于线程间的通信,以及子线程发送消息通知UI线程刷新View等等.这里我主要总结下我对整个消息传递机制,包括Handler,Looper,Messag ...

  7. 史上最详细的Android消息机制源码解析

    本人只是Android菜鸡一个,写技术文章只是为了总结自己最近学习到的知识,从来不敢为人师,如果里面有不正确的地方请大家尽情指出,谢谢! 606页Android最新面试题含答案,有兴趣可以点击获取. ...

  8. Android 缓存

    1.Android缓存机制&一个缓存框架推荐 http://blog.csdn.net/shakespeare001/article/details/51695358 2.ASimpleCac ...

  9. 【腾讯Bugly干货分享】Android ListView与RecyclerView对比浅析--缓存机制

    本文来自于腾讯bugly开发者社区,非经作者同意,请勿转载,原文地址:http://dev.qq.com/topic/5811d3e3ab10c62013697408 作者:黄宁源 一,背景 Recy ...

随机推荐

  1. android user用户版本提高adb权限【转】

    本文转载自:http://blog.csdn.net/liyongming1982/article/details/14108111 有的user用户版本的log 不全,且push/pull某些文件或 ...

  2. Hihocoder #1098 : 最小生成树二·Kruskal算法 ( *【模板】 )

    #1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用 ...

  3. js split分割字符串成数组

    str = "2,2,3,5,6"; //这是一字符串 var strs = new Array(); //定义一数组 strs = str.split("," ...

  4. Python项目使用memcached缓存

    前言许多Web应用都将数据保存到MySQL这样的关系型数据库管理系统中,应用服务器从中读取数据并在浏览器中显示. 但随着数据量的增大.访问的集中,就会出现数据库的负担加重.数据库响应恶化. 网站显示延 ...

  5. 使用Navicat连接MySQL出现1251错误

    问题:navicat连接mysql时报错:1251-Client does not support authentication protocol requested by server; consi ...

  6. SQLite学习手册(开篇)

    一.简介: SQLite是目前最流行的开源嵌入式数据库,和很多其他嵌入式存储引擎相比(NoSQL),如BerkeleyDB.MemBASE等,SQLite可以很好的支持关系型数据库所具备的一些基本特征 ...

  7. Linux 开机引导和启动过程详解

    你是否曾经对操作系统为何能够执行应用程序而感到疑惑?那么本文将为你揭开操作系统引导与启动的面纱. 理解操作系统开机引导和启动过程对于配置操作系统和解决相关启动问题是至关重要的.该文章陈述了 GRUB2 ...

  8. CoreGpaphics

    CoreGpaphics基本应用 CGAffineTransformMake开头的函数 是基于最初始的位置来变化的 带有CGAffineTransform参数是基于CGAffineTransform的 ...

  9. ASP.NET Core MVC 2.x 全面教程_ASP.NET Core MVC 23. 继续讲Tag Helpers 和复习View Component

    当条件为true就渲染,否则就不渲染 ‘ 判断用户的登陆 更好的一点是做一个TagHelper.把这些明显的C#代码都去掉.最终都是用html和属性的形式来组成一个最终的代码 属性名称等于Confit ...

  10. Android控件大全(四)——CoordinatorLayout

    CoordinatorLayout 其实就是个高级的FrameLayout,用于协调子布局要使用该控件,需要再gradle中加入: compile 'com.android.support:desig ...