题目传送

学习的这篇题解

结论:

1.直观感受一下会发现找到LIS,LIS里的东西相对位置是不会变的,其他的移一移总会排序成功的,所以其他的就是最小集合了,第一问的答案就是n-LIS;

2.寻找字典序第k小的集合,相当于是寻找字典序第k大的LIS,然后把这个LIS删去,就是第二问的答案集合。

前置技能:

树状数组,及树状数组求LIS。

解决方法(请先看代码):

1.树状数组bit[i]求LIS的同时再维护一下“以比i大的数字为开头、这个LIS长度下的序列的数量”。数量超过maxk的时候min一下砍掉(是一种常见手法),因为多了也没有用它只会询问maxk以内的,否则有可能爆longlong。

2.用vector存下每个长度的LIS是以哪些位置为起点,然后按长度从大到小枚举,看看第k个是哪个LIS,标记这些数字。因为之前维护了数量,所以这时就不用从1开始一个一个枚举到k了,一下砍下去一段。

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <ctime>
#include <cctype>
#include <climits>
#include <iostream>
#include <iomanip>
#include <algorithm>
#include <string>
#include <sstream>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <vector>
#include <list>
#include <fstream>
#include <bitset>
#define init(a, b) memset(a, b, sizeof(a))
#define rep(i, a, b) for (int i = a; i <= b; i++)
#define irep(i, a, b) for (int i = a; i >= b; i--)
using namespace std; typedef double db;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> P;
const int inf = 0x3f3f3f3f;
const ll INF = 1e18; template <typename T> void read(T &x) {
x = ;
int s = , c = getchar();
for (; !isdigit(c); c = getchar())
if (c == '-') s = -;
for (; isdigit(c); c = getchar())
x = x * + c - ;
x *= s;
} template <typename T> void write(T x) {
if (x < ) x = -x, putchar('-');
if (x > ) write(x / );
putchar(x % + '');
} template <typename T> void writeln(T x) {
write(x);
puts("");
} const int maxn = 1e5 + ;
const ll maxk = 1e18; int n, a[maxn];
ll k;
struct Arr {
int len;
ll cnt;
Arr() {
len = , cnt = ;
}
Arr(int a, ll b) {
len = a, cnt = b;
}
}dp[maxn], bit[maxn];
vector<int> v[maxn];
bool mark[maxn]; void Modify(Arr &a, Arr b) {
if (a.len > b.len) return;
if (a.len < b.len) {
a = b;
return;
}
a.cnt = min(maxk, a.cnt + b.cnt);
} void Update(int x, Arr val) {
for (; x; x -= x&-x)
Modify(bit[x], val);
} Arr Query(int x) {
Arr ret(, );
for (; x <= n; x += x&-x)
Modify(ret, bit[x]);
return ret;
} int main() {
read(n), read(k);
rep(i, , n) read(a[i]);
//树状数组维护一个后缀最大序列(的长度和此长度下的LIS个数),规则是:1.长度最大;2.如果长度相同,累加数量
irep(i, n, ) {//比较字典序是从左往右,所以将此长度下的cnt集中在左端,故而倒序
dp[i] = Query(a[i] + );
v[++dp[i].len].push_back(i);
Update(a[i], dp[i]);
} int LIS = Query().len;
for (int i = LIS, pos = ; i; --i) {
for (int j = v[i].size() - ; ~j; --j) {
//找字典序大的,所以倒着找。vector的插入导致其中的a[p]必然升序
int p = v[i][j];
if (dp[p].cnt < k) {//以当前数字为开头的所有LIS的数量都无法满足k的需求,则这个开头被pass
k -= dp[p].cnt;
} else {//说明要找的LIS以当前这个数字为开头
mark[a[p]] = true;
while (pos < p) dp[pos++].cnt = ;
//选定这个数以后,因为是找LIS,所以它之前的数不能再选中
break;
}
}
} writeln(n - LIS);
rep(i, , n) {
if (!mark[i])
writeln(i);
}
return ;
}

BZOJ5484(LIS性质+树状数组)的更多相关文章

  1. nlogn求LIS(树状数组)

    之前一直是用二分 但是因为比较难理解,写的时候也容易忘记怎么写. 今天比赛讲评的时候讲了一种用树状数组求LIS的方法 (1)好理解,自然也好写(但代码量比二分的大) (2)扩展性强.这个解法顺带求出以 ...

  2. 「BZOJ1669」D 饥饿的牛 [Usaco2006 Oct] Hungry Cows 牛客假日团队赛5 (LIS,离散化树状数组)

    链接:https://ac.nowcoder.com/acm/contest/984/D 来源:牛客网 饥饿的牛 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言 ...

  3. UvaLive 6667 Longest Chain (分治求三元组LIS&amp;树状数组)

    题目链接: here 题意: 和hdu4742类似.差别就是一部分三元组是直接给出的.另一部分是用他给的那个函数生成的.还有就是这里的大于是严格的大于a>b必须ax>bx,ay>by ...

  4. Dynamic Inversions II 逆序数的性质 树状数组求逆序数

    Dynamic Inversions II Time Limit: 6000/3000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Other ...

  5. [noip科普]关于LIS和一类可以用树状数组优化的DP

    预备知识 DP(Dynamic Programming):一种以无后效性的状态转移为基础的算法,我们可以将其不严谨地先理解为递推.例如斐波那契数列的递推求法可以不严谨地认为是DP.当然DP的状态也可以 ...

  6. Codeforces 486E LIS of Sequence --树状数组求LIS

    题意: 一个序列可能有多个最长子序列,现在问每个元素是以下三个种类的哪一类: 1.不属于任何一个最长子序列 2.属于其中某些但不是全部最长子序列 3.属于全部最长子序列 解法: 我们先求出dp1[i] ...

  7. 【Codeforces】Gym 101156E Longest Increasing Subsequences LIS+树状数组

    题意 给定$n$个数,求最长上升子序列的方案数 根据数据范围要求是$O(n\log n)$ 朴素的dp方程式$f_i=max(f_j+1),a_i>a_j$,所以记方案数为$v_i$,则$v_i ...

  8. poj1631——树状数组求LIS

    题目:http://poj.org/problem?id=1631 求LIS即可,我使用了树状数组. 代码如下: #include<iostream> #include<cstdio ...

  9. HDU1087(树状数组求LIS)

    题是水题,学习一下用树状数组求LIS. 先离散化一下,注意去重:然后就把a[i]作为下标,dp[i]作为值,max作为维护的运算插进树状数组即可. 如果是上升子序列,询问(a[i] - 1):如果是不 ...

随机推荐

  1. String、StringBilder和StringBuffer之间的区别

    1.三者在执行速度方面的比较:StringBuilder >  StringBuffer  >  String 2.String <(StringBuffer,StringBuild ...

  2. 二分法和牛顿迭代实现开根号函数:OC的实现

    最近有人贴出BAT的面试题,题目链接. 就是实现系统的开根号的操作,并且要求一定的误差,其实这类题就是两种方法,二分法和牛顿迭代,现在用OC的方法实现如下: 第一:二分法实现 -(double)sqr ...

  3. sanic官方文档解析之Example(一)

    1,示例 这部的文档是简单的示例集合,它能够帮助你快速的启动应用大部分的应用,这些应用大多事分类的,并且提供给ini工作的连接代码: 1.1,基础示例 这部分示例集成了提供简单sanic简单的代码 单 ...

  4. Codeforces Round #422 (Div. 2) C. Hacker, pack your bags! 排序,贪心

    C. Hacker, pack your bags!     It's well known that the best way to distract from something is to do ...

  5. NettyIO

  6. mysql 数据库连接

    1.需要mysql驱动包:mysql-connector-java-5.1.7-bin.jar 2. package com.jmu.ccjoin.web.controller; import jav ...

  7. Codeforces Round #326 (Div. 2)

    B. Duff in Love time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  8. vue弹窗插件实战

    vue做移动端经常碰到弹窗的需求, 这里写一个功能简单的vue弹窗 popup.vue <template> <div class="popup-wrapper" ...

  9. caioj1462: 【EXKMP】回文串

    不得不说这是一道好题(前排膜拜灯教授),其实这道题如果不说是EXKMP,很容易就想到Manacher(好像也可以这样做) 回到这道题,这样只有一个字符串,还要求回文?立刻想到了将这个串和它的反串跑EX ...

  10. 基于Python 的简单推荐系统

    def loadExData(): return[[1,1,1,0,0], [2,2,2,0,0], [1,1,1,0,0], [5,5,5,0,0], [1,1,0,2,2], [0,0,0,3,3 ...