题目链接:http://poj.org/problem?id=3186

Treats for the Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6548   Accepted: 3446

Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:

  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5
1
3
1
5
2

Sample Output

43

Hint

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

Source

 
 
 
一.正向思维:
1.dp[l][r]表示:左边取了l个, 右边取了r个的最大值。
2.枚举左边取了多少个, 再枚举右边取了多少个。
3.对于当前的 dp[l][r],它可以是在dp[l-1][r]的基础上取了a[l];也可以是在dp[l][r-1]的基础上取了a[n+1-r]。所以:
dp[l][r] = max(dp[l-1][r]+a[l], dp[l][r-1]+a[n+1-r])

当然,还需要注意边界条件:l-1>=0,r-1>=0

 
代码如下:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 2e3+; int n;
int a[MAXN], dp[MAXN][MAXN]; int main()
{
while(scanf("%d", &n)!=EOF)
{
for(int i = ; i<=n; i++)
scanf("%d", &a[i]); memset(dp, , sizeof(dp));
for(int l = ; l<=n; l++)
for(int r = ; l+r<=n; r++)
{
if(l!=) dp[l][r] = max(dp[l-][r]+(l+r)*a[l], dp[l][r]);
if(r!=) dp[l][r] = max(dp[l][r], dp[l][r-]+(l+r)*a[n+-r]);
} int ans = -INF;
for(int l = ; l<=n; l++)
ans = max(ans, dp[l][n-l]);
printf("%d\n", ans);
}
}
 
二.逆向思维:
1.逆向推导, 即把过程逆过来,然后就变成了:从中间开始往外取,这样就变成了连续的一段。
2.dp[i][j]表示:区间[i, j]的最大值。
3.枚举区间长度, 然后再枚举起点(终点就确定了)。对于dp[i][j],它可以是在dp[i+1][j]的基础上取了a[i],也可以是在dp[i][j-1]的基础上取了a[j]。两者取其大。
 
 
代码如下:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 2e3+; int n;
int a[MAXN], dp[MAXN][MAXN]; int main()
{
while(scanf("%d", &n)!=EOF)
{
for(int i = ; i<=n; i++)
scanf("%d", &a[i]); for(int i = ; i<=n; i++)
dp[i][i] = a[i]*n; for(int len = ; len<=n; len++)
for(int i = ; i+len-<=n; i++)
{
int j = i+len-;
dp[i][j] = max(dp[i+][j]+(n-len+)*a[i], dp[i][j-]+(n-len+)*a[j]);
} printf("%d\n", dp[][n]);
}
}

三.记忆化搜索:

1.上面的两种方法都要考虑枚举顺序的问题,有时比较不好处理。那么可以用记忆化搜索。

2. 思维与方法二一样,只是写法不同。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 2e3+; int n;
int a[MAXN], dp[MAXN][MAXN]; int dfs(int l, int r)
{
if(l==r) return n*a[l];
if(dp[l][r]!=-) return dp[l][r];
int k = n-r+l; dp[l][r] = max(k*a[l]+dfs(l+, r), k*a[r]+dfs(l,r-));
return dp[l][r];
} int main()
{
while(scanf("%d", &n)!=EOF)
{
for(int i = ; i<=n; i++)
scanf("%d", &a[i]); memset(dp, -, sizeof(dp));
printf("%d\n", dfs(,n));
}
}

POJ3186 Treats for the Cows —— DP的更多相关文章

  1. kuangbin专题十二 POJ3186 Treats for the Cows (区间dp)

    Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7949   Accepted: 42 ...

  2. poj3186 Treats for the Cows

    http://poj.org/problem?id=3186 Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  3. BZOJ 1652: [Usaco2006 Feb]Treats for the Cows( dp )

    dp( L , R ) = max( dp( L + 1 , R ) + V_L * ( n - R + L ) , dp( L , R - 1 ) + V_R * ( n - R + L ) ) 边 ...

  4. poj 3186 Treats for the Cows(dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  5. poj3186 Treats for the Cows(区间)

    题目链接:http://poj.org/problem?id=3186 题意:第一个数是N,接下来N个数,每次只能从队列的首或者尾取出元素. ans=每次取出的值*出列的序号.求ans的最大值. 样例 ...

  6. POJ3186:Treats for the Cows(区间DP)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  7. 【POJ - 3186】Treats for the Cows (区间dp)

    Treats for the Cows 先搬中文 Descriptions: 给你n个数字v(1),v(2),...,v(n-1),v(n),每次你可以取出最左端的数字或者取出最右端的数字,一共取n次 ...

  8. poj 3186 Treats for the Cows(区间dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  9. (区间dp + 记忆化搜索)Treats for the Cows (POJ 3186)

    http://poj.org/problem?id=3186   Description FJ has purchased N (1 <= N <= 2000) yummy treats ...

随机推荐

  1. [MVC]在练习MusicStore过程中问题实录

    1,问题描述:MVC在添加基于框架的控制器时,出现无法检索xxx的元数据 参考目录:http://www.cnblogs.com/0banana0/p/4050793.html#undefined 解 ...

  2. Python Tornado简单的http request

    这是关于chunk encoding传输以前相关传输编码的处理.没有做压缩解码的处理. import tornado.ioloop import tornado.iostream import soc ...

  3. MQ报错java.lang.IllegalStateException: Failed to load ApplicationContext

    这个问题是jdk版本造成的,把jdk1.8换成jdk1.7问题就解决了

  4. [luoguP3068] [USACO13JAN]派对邀请函Party Invitations(stl大乱交)

    传送门 记录每一个编号在那些组中,可以用vector,这里选择链式前向星. 每一组用set 将被邀请的放到queue中 #include <set> #include <queue& ...

  5. 【BZOJ1237】配对(贪心,DP)

    题意:有n个a[i]和b[i],调整顺序使abs(a[i]-b[i])之和最小,但a[i]<>b[i].保证所有 Ai各不相同,Bi也各不相同. 30%的数据满足:n <= 104 ...

  6. linux下库文件的编程

    编程到了一定的时候,总喜欢追求新的东西.将代码尽量模块化就是我的追求之一,原来只是满足于将代码从单文件中分离,通过头文件和实现文件实现模块化,后来发现最好的方法是打包成库文件,使用更加方便.尽管在li ...

  7. python学习之 -- 数据序列化

    json / pickle 数据序列化 序列化定义:把变量从内存中变成可存储或传输的过程称为序列化.反序列化:把变量内容从序列化的对象重新读到内存里称为反序列胡. 序列化模块之--pickle使用注意 ...

  8. 【小记事】解除端口占用(Windows)

    开发中有时会因为端口占用而导致起项目时报错(如下图),这时候只要解除端口占用即可. 解除端口占用: 1.打开cmd(win+r),查看端口占用情况 netstat -ano | findstr 端口号 ...

  9. R-Tree空间索引算法的研究历程和最新进展分析

    转自原文 R-Tree空间索引算法的研究历程和最新进展分析,2008 摘要:本文介绍了空间索引的概念.R-Tree数据结构和R-Tree空间索引的算法描述,并从R-Tree索引技术的优缺点对R-Tre ...

  10. influxDB系列(一)

    这个是github上面一个人总结的influxDB的操作手册,还不错:https://xtutu.gitbooks.io/influxdb-handbook/content/zeng.html 1. ...