FWT [BZOJ 4589:Hard Nim]
4589: Hard Nim
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 275 Solved: 152
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
4 13
Sample Output
120
and:
or:
其实公式蛮好推的。。而且也不唯一 比如说 xor 还可以是 A=(A0-A1,A0+A1) 逆A就再反着算一下就可以
还有 FWT只是沿用 FFT和NTT的思想。
【FFT的思想,构造一种可逆的特殊变换trans,使得(trans(a*b))[i]=(trans(a))[i]*(trans(b))[i]。】
但是从界门纲目科属种来看 还是不像FFT与NTT 如此相似。
FWT不需要rev数组 ,举例N=8,下标为0~7。变换的时候,先对01,23,45,67做,再对02,13,46,57做,最后对04,15,26,37做。逆变换把顺序反过来就好了。
而且,这种特殊多项式乘法 满足结合律 ,trans后可以快速幂。
贴本题代码:
#include <bits/stdc++.h>
#define LL long long
const int mo=;
using namespace std;
int x,y,n,m,a[],T,t,f[];
LL po(LL x,LL y){
LL z=;
for (;y;y>>=,x=x*x%mo)
if (y&) z=z*x%mo;
return z;
}
void fwt(int *a,int n,int d){
for (m=;m<=n;m<<=)
for (int i=,k=m>>;i<n;i+=m)
for (int j=i;j<i+k;++j){
int u=a[j],v=a[j+k];
a[j]=(u+v)%mo,a[j+k]=(u-v)%mo;
}
if (d<){
LL x=po(n,mo-);
for (int i=;i<n;++i) a[i]=x*a[i]%mo;
}
}//注意a[i]<0
int main(){
for (int i=;i<=;++i){
if (!a[i]) a[++T]=i;
for (int j=;j<=T;++j){
int x=a[j]*i; if (x>) break;
a[x]=; if (!(i%a[j])) break;
}
}
while (scanf("%d%d",&x,&y)==){
for (t=;a[t]<=y;++t) f[a[t]]=; --t;
for (n=;n<=a[t];n<<=);
fwt(f,n,);
for (int i=;i<n;++i) f[i]=po(f[i],x);
fwt(f,n,-);
printf("%d\n",(f[]+mo)%mo);
for (int i=;i<n;++i) f[i]=;
}
return ;
}
化け物
FWT [BZOJ 4589:Hard Nim]的更多相关文章
- BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...
- bzoj 4589 Hard Nim——FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...
- BZOJ 4589 Hard Nim(FWT加速DP)
题目链接 Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...
- bzoj 4589 Hard Nim —— FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 先手必败,是一开始所有石子的异或和为0: 生成函数 (xpri[1] + xpri[2 ...
- bzoj 4589: Hard Nim【线性筛+FWT+快速幂】
T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...
- BZOJ.4589.Hard Nim(FWT)
题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...
- BZOJ 4589 Hard Nim ——FWT
[题目分析] 位运算下的卷积问题. FWT直接做. 但还是不太民白,发明者要承担泽任的. [代码] #include <cstdio> #include <cstring> # ...
- [BZOJ 4589]Hard Nim
Description 题库链接 两人玩 \(nim\) 游戏,\(n\) 堆石子,每堆石子初始数量是不超过 \(m\) 的质数,那么后手必胜的方案有多少种.对 \(10^9+7\) 取模. \(1\ ...
- bzoj 4589 FWT
#include<bits/stdc++.h> #define ll long long using namespace std; ; ; ; ; <<],b[<< ...
随机推荐
- 『NYIST』第八届河南省ACM竞赛训练赛[正式赛一]-CodeForces 236A,虽然很水,但有一个很简单的函数用起来方便
A. Boy or Girl time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- 【思维+贪心】codeforces Game of the Rows
http://codeforces.com/contest/839/problem/B [题意] 给定n组人,告诉每组人的人数,这些人要在飞机上坐座位 飞机上座位的分布看图可以知道,12 3456 ...
- hdu2294:Pendant
T<=10组数据问K<=30种珠子每种n<=1e9串成1~n长度的序列共有多少种,mod1234567891. 方程没想到.矩阵不会推.很好. f[i][j]--长度i,j种珠子方案 ...
- 从零开始写STL-string类型
class string { public: typedef size_t size_type; typedef char* iterator; typedef char value_type; pr ...
- NOIP2017 酱油记
Day0: 怀着激动无比的小心情,坐上了学校的校车. 然后司机在某个小县城迷路了,迷路了两个多小时.... 来到酒店,去吃了几把鸡,没见到鸡屁股... 洗了个澡早早睡了.. Day1: 一早被闹铃叫醒 ...
- POJ 2346 【DP】
题意: 给一个正的不大于10的偶数n,求n个数字组成的数字串前n/2位和后n/2位的和相等的个数. 思路: dp[i][j]由i位数组成的和为j的数字串的个数. dp[i][j]+=dp[i-1][j ...
- 【SQL Server 学习系列】-- ConnectionTimeout、CommandTimeout和BulkCopyTimeout
1. SqlConnection.ConnectionTimeout获取在尝试建立连接时终止尝试并生成错误之前所等待的时间.单位:秒默认值:15秒设置为0时,表示无限制 2. SqlCommand.C ...
- POJ 3264 Balanced Lineup(RMQ_ST)
题目链接:http://poj.org/problem? id=3264 Description For the daily milking, Farmer John's N cows (1 ≤ N ...
- Office WORD如何去掉目录的背景灰色
有人说鼠标点击空白的地方灰色就自动散掉了,但是我点击并没有散掉 鼠标选中有灰色背景的文字,点击格式-边框和底纹,点击无填充颜色,并应用于文字. O了
- 是男人就下100层【第四层】——Crazy贪吃蛇(2)
在上一篇<是男人就下100层[第四层]--Crazy贪吃蛇(1)>中我们让贪吃蛇移动了起来,接下来我们来实现让贪吃蛇能够绕着手机屏幕边线移动而且能够改变方向 一.加入状态并改动代码 首先我 ...