题目链接 Drazil and Park

中文题面 传送门

如果他选择了x和y,那么他消耗的能量为dx + dx + 1 + ... + dy - 1 + 2 * (hx + hy).

把这个式子写成这个形式

(d1 + d2 + ... + dy - 1 + 2 * hy) + (2 * hx - (d1 + d2 + ... + dx - 1))

令(2 * hk - (d1 + d2 + ... + dk - 1)) = Lk 

   (d1 + d2 + ... + dk - 1 + 2 * hk) = Rk

我们在查询的时候,就要在[a, b]内找到u, v 使得L[u] + R[v] 最大

而当 u < v 的时候,总有 L[u] + R[v] > L[v] + R[u]

那我们放心地在[a, b]这个区间内找u和v,使L[u]和R[v]分别为这段区间上的最大值

这个过程用ST表维护即可。

但是我们要注意u = v的情况,也就是说求出来的u和v可能相等。

而题目的要求是u和v必须不相等

那么这个时候我们分类讨论一下,把[a, b]在u这一点分割成两个区间,在[a, u - 1]和[u + 1, b]里去找v

同理把[a, b]在v这一点分割成两个区间,在[a, v - 1]和[v + 1, b]里去找u

问题就这么解决了

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL;
typedef pair <LL, int> PII; const int N = 2e5 + 10;
const int A = 19; int n, m;
LL d[N], h[N], s[N];
PII x[N], y[N], f[N][A], g[N][A];
int L, R;
int et; void ST(){
rep(i, 1, n) f[i][0] = x[i];
rep(j, 1, 18)
rep(i, 1, n)
if ((i + (1 << j) - 1) <= n) f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]); rep(i, 1, n) g[i][0] = y[i];
rep(j, 1, 18)
rep(i, 1, n)
if ((i + (1 << j) - 1) <= n) g[i][j] = max(g[i][j - 1], g[i + (1 << (j - 1))][j - 1]);
} inline PII Xmax(int l, int r){
if (l > r) return make_pair(-1e18, 0);
int k = (int)log2((double)(r - l + 1));
return max(f[l][k], f[r - (1 << k) + 1][k]);
} inline PII Ymax(int l, int r){
if (l > r) return make_pair(-1e18, 0);
int k = (int)log2((double)(r - l + 1));
return max(g[l][k], g[r - (1 << k) + 1][k]);
} LL solve(int l, int r){
PII n1 = Xmax(l, r), n2 = Ymax(l, r);
if (n1.second != n2.second) return n1.first + n2.first;
PII n3 = max(Ymax(l, n1.second - 1), Ymax(n1.second + 1, r));
PII n4 = max(Xmax(l, n2.second - 1), Xmax(n2.second + 1, r));
return max(n1.first + n3.first, n2.first + n4.first);
} int main(){ scanf("%d%d", &n, &m);
rep(i, 1, n) scanf("%lld", d + i);
rep(i, 1, n) scanf("%lld", h + i); rep(i, n + 1, n << 1) d[i] = d[i - n];
rep(i, n + 1, n << 1) h[i] = h[i - n]; rep(i, 2, n << 1) s[i] = s[i - 1] + d[i - 1];
rep(i, 1, n << 1) x[i] = make_pair(2 * h[i] + s[i], i);
rep(i, 1, n << 1) y[i] = make_pair(2 * h[i] - s[i], i); et = n;
n <<= 1;
ST();
n = et; while (m--){
int l, r;
scanf("%d%d", &l, &r);
if (r >= l) L = r + 1, R = l - 1 + n; else L = r + 1, R = l - 1;
printf("%d %d\n", L, R);
printf("%lld\n", solve(L, R));
} return 0;
}

Codeforces 515E Drazil and Park (ST表)的更多相关文章

  1. Codeforces 475D 题解(二分查找+ST表)

    题面: 传送门:http://codeforces.com/problemset/problem/475/D Given a sequence of integers a1, -, an and q ...

  2. Codeforces 873E Awards For Contestants ST表

    原文链接https://www.cnblogs.com/zhouzhendong/p/9255885.html 题目传送门 - CF873E 题意 现在要给 $n(n\leq 3000)$ 个学生颁奖 ...

  3. Codeforces 803G Periodic RMQ Problem ST表+动态开节点线段树

    思路: (我也不知道这是不是正解) ST表预处理出来原数列的两点之间的min 再搞一个动态开节点线段树 节点记录ans 和标记 lazy=-1 当前节点的ans可用  lazy=0 没被覆盖过 els ...

  4. CodeForces 516C Drazil and Park 线段树

    原文链接http://www.cnblogs.com/zhouzhendong/p/8990745.html 题目传送门 - CodeForces 516C 题意 在一个环上,有$n$棵树. 给出每一 ...

  5. codeforces 516c// Drazil and Park// Codeforces Round #292(Div. 1)

    题意:一个圆环上有树,猴子上下其中一棵树,再沿着换跑,再上下另一棵树.给出一个区间,问最大的运动距离是. 给出区间大小dst,和数高数组arr. 设区间[x,y],a[x]=2*arr[x]+dst[ ...

  6. Codeforces Round #292 (Div. 1) C. Drazil and Park 线段树

    C. Drazil and Park 题目连接: http://codeforces.com/contest/516/problem/C Description Drazil is a monkey. ...

  7. ST表入门学习poj3264 hdu5443 hdu5289 codeforces round #361 div2D

    ST算法介绍:[转自http://blog.csdn.net/insistgogo/article/details/9929103] 作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例 方 ...

  8. Codeforces Round #422 (Div. 2)E. Liar sa+st表+dp

    题意:给你两个串s,p,问你把s分开顺序不变,能不能用最多k段合成p. 题解:dp[i][j]表示s到了前i项,用了j段的最多能合成p的前缀是哪里,那么转移就是两种,\(dp[i+1][j]=dp[i ...

  9. 【CodeForces】713 D. Animals and Puzzle 动态规划+二维ST表

    [题目]D. Animals and Puzzle [题意]给定n*m的01矩阵,Q次询问某个子矩阵内的最大正方形全1子矩阵边长.n,m<=1000,Q<=10^6. [算法]动态规划DP ...

随机推荐

  1. QT+动手设计一个登陆窗口+布局

    登陆窗口的样式如下: 这里面涉及着窗口的UI设计,重点是局部布局和整体布局, 首先在ui窗口上添加一个容器类(Widget),然后将需要添加的控件放置在容器中,进行局部布局(在进行局部布局的时候可以使 ...

  2. 【JavaScript】两种常见JS面向对象写法

    基于构造函数 function Circle(r) { this.r = r; } Circle.PI = 3.14159; Circle.prototype.area = function() { ...

  3. 更新portage之后 安装 certbot

    运行的时候一直报如下的错误: sudo certbot 错误结果: Traceback (most recent call last): File "/usr/lib/python-exec ...

  4. 虚拟dom和diff算法

    https://github.com/livoras/blog/issues/13 这里简单记录一些要点和理解: 一个dom元素中有许多属性,操作dom是很耗资源的,而操作自定义的js对象是很高效.所 ...

  5. 【编码】【转发】enca 转换编码

    enca用法如下: enca -L zh_CN file 检查文件的编码 enca -L zh_CN -x UTF-8 file 将文件编码转换为"UTF-8"编码 enca -L ...

  6. 【mysql】linux, mac mysql数据库root 密码忘记修改

    首先关闭正在运行的mysqld进程 执行mysqld_safe --skips-grant-tables & 双击enter 键进入命令行模式 执行 mysql linux 系统执行:upda ...

  7. 关于面试总结-SQL经典面试题

    关于面试总结6-SQL经典面试题 前言 用一条SQL 语句查询xuesheng表每门课都大于80 分的学生姓名,这个是面试考sql的一个非常经典的面试题 having和not in 查询 xueshe ...

  8. Matplotlib基本图形之条形图

    Matplotlib基本图形之条形图 条形图特点: 以长方形的长度为变量的统计图表用来比较多个数据分类的数据大小通常用于较小的数据集分析例如不同季度的销量,不同国家的人口 示例代码: import o ...

  9. java编程思想阅读记录

    第五章:初始化与清理 1.构造器确保初始化 构造器采用与类名相同的方法. 创建对象时,将会为对象分配存储空间,并调用相应的构造器.这就确保了在你能操作对象之前,它就已经恰当的被初始化了. 垃圾回收器负 ...

  10. SQL server 事务实例

    简单的SQLserver事务实例: 执行SQL 组合操作A.操作B,只有AB都执行成功时才提交事务,否则回滚事务. 测试数据表: --1.数据表A CREATE TABLE A( A1 VARCHAR ...