题意:n个顾客依次来买猪,有n个猪房,每个顾客每次可以开若干个房子,买完时,店主可以调整这位顾客

开的猪房里的猪,共m个猪房,每个猪房有若干猪,求最多能卖多少猪。

构图思想:顾客有先后,每个人想要的猪数量已经确定,显然要建汇点t,每个顾客连线t(以顾客为结点),权值为他想要买

的猪数量(最多想要的都卖了,最大流之归宿,必思汇点!)然后,你想,每个顾客有先后顺序,前一个顾客开过的

房子取的猪数量可以重新分配必然要连后一个开这个房子的顾客连线(权为inf)(相当于前面一个先取该流量,后面的再取,重新分配)

这样建图!如果没有开过的房子怎么办?建立超级源点啊,权值为房子猪数量。这个可以用一个链来存储,

下面代码中fa【】数组实现之即可,记录前一个开过的顾客号码,没有开过的用s连他。



此题经典啊(被大牛定位较难题),关键是这种构图思想。小结一下:先思源汇点(看最大情况),再思哪些作为结点好,

这题每个结点之间有限制,故在先的结点先取源流,再通向下一个被限制的点,这思想很重要。

关于网上流传的简化图三规则,若是或字关系,是错的:

规律1. 如果几个结点的流量的来源完全相同,则可以把它们合并成一个.

规律2. 如果几个结点的流量的去向完全相同,则可以把它们合并成一个.

规律3. 如果从点u到点v有一条容量为∞的边,并且点v除了点u以外没有别的流量来源,则可以把这两个结点合并成一个.

,符合规则1或2,随便举个例子就错了,我认为1,2合为一条,

必需同时满足才可以合并。

#include<iostream>  //16 ms 1A
#include<cstdio>
#include<queue>
using namespace std;
int m,n;int numpig[1010];int fa[1010];
int e[10000][3];int nume;int head[110]; const int inf=0x3f3f3f3f;
void addedge(int from,int to,int w)
{
e[nume][0]=to; e[nume][1]=head[from];head[from]=nume;
e[nume++][2]=w;
e[nume][0]=from; e[nume][1]=head[to];head[to]=nume;
e[nume++][2]=0;
}
int level[120];int vis[120];
bool bfs() //dinic
{
for(int i=0;i<=n+1;i++)
vis[i]=level[i]=0;
queue<int>q;q.push(0);
vis[0]=1;
while(!q.empty())
{
int cur=q.front();q.pop();
for(int i=head[cur];i!=-1;i=e[i][1])
{ int v=e[i][0];
if(!vis[v]&&e[i][2]>0)
{
level[v]=level[cur]+1;
if(v==1+n)return 1;
vis[v]=1;
q.push(v);
}
}
}
return vis[1+n];
}
int dfs(int u,int minf)
{
if(u==1+n||minf==0)return minf;
int sumf=0,f;
for(int i=head[u];i!=-1&&minf;i=e[i][1])
{ int v=e[i][0];
if(level[v]==level[u]+1&&e[i][2]>0)
{
f=dfs(v,minf<e[i][2]?minf:e[i][2]);
e[i][2]-=f;e[i^1][2]+=f;
minf-=f;sumf+=f;
}
}
return sumf;
}
int dinic()
{
int sum=0;
while(bfs())
{
sum+=dfs(0,inf);
}
return sum;
}
int main()
{
scanf("%d%d",&m,&n);
for(int i=1;i<=m;i++)
{
scanf("%d",&numpig[i]);
fa[i]=0;
}
for(int i=0;i<=n+1;i++)
head[i]=-1;
nume=0;
int numkey,house,numwant;
for(int i=1;i<=n;i++) //构图
{
scanf("%d",&numkey);
while(numkey--)
{
scanf("%d",&house);
addedge(fa[house],i,fa[house]==0?numpig[house]:inf);
fa[house]=i;
}
scanf("%d",&numwant);
addedge(i,n+1,numwant);
}
int ans=dinic();
printf("%d\n",ans);
return 0;
}

poj1149最大流经典构图神题的更多相关文章

  1. poj 1149 PIGS(最大流经典构图)

    题目描述:迈克在一个养猪场工作,养猪场里有M 个猪圈,每个猪圈都上了锁.由于迈克没有钥匙,所以他不能打开任何一个猪圈.要买猪的顾客一个接一个来到养猪场,每个顾客有一些猪圈的钥匙,而且他们要买一定数量的 ...

  2. POJ1149 最大流经典建图PIG

    题意:       有一个人,他有m个猪圈,每个猪圈里都有一定数量的猪,但是他没有钥匙,然后依次来了n个顾客,每个顾客都有一些钥匙,还有他要卖猪的数量,每个顾客来的时候主人用顾客的钥匙打开相应的门,可 ...

  3. JAVA经典算法40题及解答

    JAVA经典算法40题 [程序1]   题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程序分 ...

  4. POJ 2484 A Funny Game(神题!)

    一开始看这道博弈题的时候我就用很常规的思路去分析了,首先先手取1或者2个coin后都会使剩下的coin变成线性排列的长条,然后无论双方如何操作都是把该线条分解为若干个子线条而已,即分解为若干个子游戏而 ...

  5. BUAA 724 晴天小猪的神题(RMQ线段树)

    BUAA 724 晴天小猪的神题 题意:中文题,略 题目链接:http://acm.buaa.edu.cn/problem/724/ 思路:对于询问x,y是否在同一区间,可以转换成有没有存在一个区间它 ...

  6. Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 128[Submit][Status ...

  7. UVA 674 Coin Change 换硬币 经典dp入门题

    题意:有1,5,10,25,50五种硬币,给出一个数字,问又几种凑钱的方式能凑出这个数. 经典的dp题...可以递推也可以记忆化搜索... 我个人比较喜欢记忆化搜索,递推不是很熟练. 记忆化搜索:很白 ...

  8. JAVA经典算法40题

    1: JAVA经典算法40题 2: [程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 3 ...

  9. JAVA经典算法40题(原题+分析)之分析

    JAVA经典算法40题(下) [程序1]   有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?   1.程序分析:  ...

随机推荐

  1. C++基础:虚函数、重载、覆盖、隐藏<转>

    转自:http://www.2cto.com/kf/201404/291772.html 虚函数总是跟多态联系在一起,引入虚函数可以使用基类指针对继承类对象进行操作! 虚函数:继承接口(函数名,参数, ...

  2. java 正则表达式如何提取中文的问题

    String regex="([\u4e00-\u9fa5]+)"; String str="132更新至456"; Matcher matcher = Pat ...

  3. javaEE(7)_自定义标签&JSTL标签(JSP Standard Tag Library)

    一.自定义标签简介 1.自定义标签主要用于移除Jsp页面中的java代码,jsp禁止出现一行java脚本. 2.使用自定义标签移除jsp页面中的java代码,只需要完成以下两个步骤: •编写一个实现T ...

  4. Log4J的配置与使用详解

    一.简介 Log4j是Apache的一个开放源代码项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件.甚至是套接口服务器.NT的事件记录器.UNIX Syslog守护 ...

  5. nodejs 设置安装包路径的取消和安装cnpm

    安装cnpm: $ npm install -g cnpm --registry=https://registry.npm.taobao.org 配置nodejs的npm安装包路径: npm conf ...

  6. 【贪心】bzoj1572: [Usaco2009 Open]工作安排Job

    先是没怎么理解这个贪心……然后贪心又被细节弄挂…… Description Farmer John 有太多的工作要做啊!!!!!!!!为了让农场高效运转,他必须靠他的工作赚钱,每项工作花一个单位时间. ...

  7. mysqldump导出备份数据库报Table ‘performance_schema.session_variables‘ doesn‘t exist

    今天在bash进行本地数据库往云端数据库导数据的时候,在本地导出.sql文件这第一步就出现了错误问题,导出sql文件的命令: mysqldump -u 用户名 -p 数据库名 > xxx.sql ...

  8. linux系统,python3.7环境安装talib过程

    获取源码wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz 解压进入目录tar -zxvf ta-lib-0. ...

  9. 经典:区间dp-合并石子

    题目链接 :http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=737 这个动态规划的思是,要得出合并n堆石子的最优答案可以从小到大枚举所有石子合并 ...

  10. Python 前端 Html基础

    概述 HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,他是一种制作万维网页的标准语言.相当于定义统一 的规则.大家都来遵守它,这样就可以让浏览器根据标记语 ...