R in action读书笔记(8)-第八章:回归(上)
8.1回归的多面性
8.2 OLS回归
OLS回归拟合模型形式:
为了能够恰当地解释oLs模型的系数,数据必须满足以下统计假设。
口正态性对于固定的自变量值,因变量值成正态分布。
口独立性Yi值之间相互独立。
口线性因变量与自变量之间为线性相关。
口同方差性因变量的方差不随自变量的水平不同而变化。也可称作不变方差,但是说同方差性感觉上更犀利。
8.2.1用lm()拟合回归模型
myfit<-lm(formula,data)
formula指要拟合的模型形式,data是一个数据框,包含了用于拟合模型的数据。
表达式(formula):Y~X1+X2+…+Xk
8.2.2简单线性回归
> fit<-lm(weight~height,data=women)
> summary(fit)
Call:
lm(formula = weight ~height, data = women)
Residuals:
Min 1Q Median 3Q Max
-1.7333 -1.1333-0.3833 0.7417 3.1167
Coefficients:
Estimate Std. Error t valuePr(>|t|)
(Intercept)-87.51667 5.93694 -14.74 1.71e-09 ***
height 3.45000 0.09114 37.85 1.09e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’1
Residual standarderror: 1.525 on 13 degrees of freedom
MultipleR-squared: 0.991, Adjusted R-squared: 0.9903
F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14
> plot(women$height,women$weight,xlab="h",ylab="w")
> abline(fit)
8.2.3多项式回归
> plot(women$height,women$weight,xlab="h",ylab="w")
> abline(fit)
> fit2<-lm(weight~height+I(height^2),data=women)
> plot(women$height,women$weight,xlab="height(ininches)",ylab="weight (in lbs)")
> lines(women$height,fitted(fit2))
8.2.4多元线性回归
> library(car)
> states<-as.data.frame(state.x77[,c("Murder","Population","Illiteracy","Income","Frost")])
> cor(states)
Murder PopulationIlliteracy Income
Murder 1.0000000 0.3436428 0.7029752 -0.2300776
Population 0.3436428 1.0000000 0.1076224 0.2082276
Illiteracy 0.7029752 0.1076224 1.0000000 -0.4370752
Income -0.2300776 0.2082276 -0.4370752 1.0000000
Frost -0.5388834 -0.3321525 -0.6719470 0.2262822
Frost
Murder -0.5388834
Population -0.3321525
Illiteracy -0.6719470
Income 0.2262822
Frost 1.0000000
> scatterplotMatrix(states,spread=FALSE,lty.smooth=2,main="spm")
8.2.5有交互项的多元线性回归
> fit<-lm(mpg~hp+wt+hp:wt,data=mtcars)
> summary(fit)
Call:
lm(formula = mpg ~ hp +wt + hp:wt, data = mtcars)
Residuals:
Min 1Q Median 3Q Max
-3.0632 -1.6491-0.7362 1.4211 4.5513
Coefficients:
Estimate Std. Error t valuePr(>|t|)
(Intercept)49.80842 3.60516 13.816 5.01e-14 ***
hp -0.12010 0.02470 -4.863 4.04e-05 ***
wt -8.21662 1.26971 -6.471 5.20e-07 ***
hp:wt 0.02785 0.00742 3.753 0.000811 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’1
Residual standarderror: 2.153 on 28 degrees of freedom
MultipleR-squared: 0.8848, Adjusted R-squared: 0.8724
F-statistic: 71.66 on 3and 28 DF, p-value: 2.981e-13
Effects包中的effect()函数,可以用图形展示交互项的结果
Plot(effect(term,mod,xlevels),multiline=TRUE)
term即模型要画的项,mod为通过lm ( )拟合的模型,xlevels是一个列表,指定变量要设定的常量值,multiline=TRUE选项表示添加相应直线。
欢迎关注:
R in action读书笔记(8)-第八章:回归(上)的更多相关文章
- R in action读书笔记(11)-第八章:回归-- 选择“最佳”的回归模型
8.6 选择“最佳”的回归模型 8.6.1 模型比较 用基础安装中的anova()函数可以比较两个嵌套模型的拟合优度.所谓嵌套模型,即它的一 些项完全包含在另一个模型中 用anova()函数比较 &g ...
- R in action读书笔记(10)-第八章:回归-- 异常观测值 改进措施
8.4 异常观测值 8.4.1 离群点 car包也提供了一种离群点的统计检验方法.outlierTest()函数可以求得最大标准化残差绝对值Bonferroni调整后的p值: > library ...
- R in action读书笔记(9)-第八章:回归 -回归诊断
8.3回归诊断 > fit<-lm(weight~height,data=women) > par(mfrow=c(2,2)) > plot(fit) 为理解这些图形,我们来回 ...
- R in action读书笔记(22)第十六章 高级图形进阶(下)
16.2.4 图形参数 在lattice图形中,lattice函数默认的图形参数包含在一个很大的列表对象中,你可通过trellis.par.get()函数来获取,并用trellis.par.set() ...
- R in action读书笔记(21)第十六章 高级图形进阶(上)
16.1 R 中的四种图形系统 基础图形函数可自动调用,而grid和lattice函数的调用必须要加载相应的包(如library(lattice)).要调用ggplot2函数需下载并安装该包(inst ...
- R in action读书笔记(20)第十五章 处理缺失数据的高级方法
处理缺失数据的高级方法 15.1 处理缺失值的步骤 一个完整的处理方法通常包含以下几个步骤: (1) 识别缺失数据: (2) 检查导致数据缺失的原因: (3) 删除包含缺失值的实例或用合理的数值代替( ...
- R in action读书笔记(19)第十四章 主成分和因子分析
第十四章:主成分和因子分析 本章内容 主成分分析 探索性因子分析 其他潜变量模型 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分.探索性因 ...
- R in action读书笔记(17)第十二章 重抽样与自助法
12.4 置换检验点评 除coin和lmPerm包外,R还提供了其他可做置换检验的包.perm包能实现coin包中的部分功能,因此可作为coin包所得结果的验证.corrperm包提供了有重复测量的相 ...
- R in action读书笔记(14)第十一章 中级绘图 之一:散点图(高能预警)
第十一章中级绘图 本章内容: 二元变量和多元变量关系的可视化 绘制散点图和折线图 理解相关图 学习马赛克图和关联图 本章用到的函数有: plot hexbin ablines iplot scatte ...
随机推荐
- [C#]从URL中获取路径的最简单方法-new Uri(url).AbsolutePath
今天在写代码时遇到这样一个问题: 如何从字符串 "http://job.cnblogs.com/images/job_logo.gif" 中得到 "/images/job ...
- C项目实践--图书管理系统(1)
1.功能需求分析 图书管理系统主要用于对大量的图书信息,包括书名.作者.出版社.出版日期.ISBN(书号)等进行增.删.改.查以及保存等操作.同时也包括对用户的管理,用户包括管理员和普通用户两种权限, ...
- DataTables warning requested unknown parameter
This is possibly the most cryptic warning message that DataTables will show. It is a short error mes ...
- 生成 hibernate 映射文件和实体类
创建web工程,使用Hibernate的时候,在工程里一个一个创建实体类太麻烦,浪费时间,现在教大家如何用MyEclipse自动生成Hibernate映射文件及实体类 方法/步骤 创建数据库,创建 ...
- silverlight子窗体操作数据库后刷新父窗体
silverlight子窗体操作数据库后刷新父窗体 作者 Kant 写于 2011 年 07 月 02 日 分类目录 学习笔记, 所有文章 C# Silverlight 代码 刷新 学习 异步刷新 数 ...
- P3239 [HNOI2015]亚瑟王 期望dp
这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...
- ab压力测试-突破最大线程数
ab压力测试中,发现你一次最多只能启动1024个线程 默认情况下,一个线程的栈要预留1M的内存空间 而一个进程中可用的内存空间只有2G,所以理论上一个进程中最多可以开2048个线程 但是内存当然不可能 ...
- AppiumLibrary用户关键字
*** Settings *** Library AppiumLibrary Library AutoItLibrary Library os *** Keywords *** xpath应该匹配次数 ...
- C++实现用两个栈实现队列
/* * 用两个栈实现队列.cpp * * Created on: 2018年4月7日 * Author: soyo */ #include<iostream> #include<s ...
- PostgreSQL完整备份与还原过程
1. 备份10.12.2.100PC机(服务器)上的数据库(仅备份数据库和对应的数据库里面各表的结构): pg_dump -h 10.12.2.100 -U postgres -p 8101 -d t ...