Kruskal算法

图的最小生成树的算法之一,运用并查集思想来求出最小生成树。

基本思路就是把所有边从小到大排序,依次遍历这些边。如果这条边所连接的两个点在一个连通块里,遍历下一条边,如果不在,就把这条边加入连通块,这样就可以保证生成树的边权最小。

我们使用并查集来判断两个点是否在同一个连通块里,如果在,他们的find会相同,否则不在。

 #include<cstdio>
#include<algorithm>
#define N 42000
using namespace std;
struct hehe{
int a1;
int b1;
int c1;
}edge[N];
int n,m,a,b,c,father[N],num,tot,k;
int cmp(hehe x,hehe y){
return x.c1<y.c1;
}
int find(int x){
if(father[x]!=x)
father[x]=find(father[x]);
return father[x];
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i){
scanf("%d%d%d",&a,&b,&c);
edge[++num].a1=a;
edge[num].b1=b;
edge[num].c1=c;
}
for(int i=;i<=n;++i)
father[i]=i;
sort(edge+,edge+m+,cmp);
for(int i=;i<=m;++i)
if(find(edge[i].a1)!=find(edge[i].b1)){
father[edge[i].a1]=edge[i].b1;
tot+=edge[i].c1;
k++;
if(k==n-)
break;
}
printf("%d",tot);
return ;
}

图的最小生成树——Kruskal算法的更多相关文章

  1. 【转】最小生成树——Kruskal算法

    [转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...

  2. 最小生成树Kruskal算法

    Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...

  3. 求最小生成树——Kruskal算法

    给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...

  4. 最小生成树 kruskal算法&prim算法

    (先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...

  5. 算法实践--最小生成树(Kruskal算法)

    什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...

  6. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  7. 数据结构之最小生成树Kruskal算法

    1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个 ...

  8. 数据结构:最小生成树--Kruskal算法

    Kruskal算法 Kruskal算法 求解最小生成树的还有一种常见算法是Kruskal算法.它比Prim算法更直观.从直观上看,Kruskal算法的做法是:每次都从剩余边中选取权值最小的,当然,这条 ...

  9. 并查集与最小生成树Kruskal算法

    一.什么是并查集 在计算机科学中,并查集是一种树型的数据结构,用于处理一些不交集的合并及查询问题.有一个联合-查找算法(union-find algorithm)定义了两个用于次数据结构的操作: Fi ...

随机推荐

  1. web 另类方法实现“另存为”功能

    HTML5 的 FileReader 带给我们很强大的文件只读访问能力,可是在 HTML5 新增的 JS 中却没有发现有方便的另存到本地文件的相关 API,以往的办法要么调用浏览器的 save as ...

  2. H5页面快速搭建之高级字体应用实践

    原文出处: 淘宝前端团队(FED)- 龙驭 背景 最近在开发一个 H5 活动页快速搭建平台,可以通过拖拽编辑图片,文字等元素组件,快速搭建出一个移动端的活动页面,基本交互和成品效果类似 PPT 软件. ...

  3. HBase表结构设计--练习篇

    一.表结构操作 1.建立一个表scores,有两个列族grad和course [hadoop@weekend01 ~]$ hbase shell hbase(main):006:0> creat ...

  4. 拦截@RequestBody的请求数据

    要拦截首先想到的是拦截器,@RequestBody只能以流的方式读取,流被读过一次后,就不在存在了,会导致会续无法处理,因此不能直接读流 为了解决这个问题,思路如下: 1.读取流前先把流保存一下 2. ...

  5. 浅议block实现原理,block为什么使用copy关键字?

    1.block是一个特殊的oc对象,建立在栈上,而不是堆上,这么做一个是为性能考虑,还有就是方便访问局部变量. 2.默认Block使用到的局部变量会被copy,而不是retain.所以,他无法改变局部 ...

  6. 用私有构造器或者枚举类型强化Singleton

    参考Effective Java第三版 Joshua J. Bloch 参与编写JDK的大佬,上次看Collections的源码时看见了他的名字,然后翻了翻书,竟然就是他写的! 1.常见的一种: pu ...

  7. AJPFX简述Java中this关键字的使用

    Java中this关键字的使用主要有两处: 1.构造方法 this指的是调用构造方法进行初始化的对象. //有参构造public Human(String name, int age) { this( ...

  8. AJPFX总结java开发常用类(包装,数字处理集合等)(二)

    二:进军集合类 集合其实就是存放对象的容器,专业点说就是集合是用来存储和管理其他对象的对象,即对象的容器.集合可以扩容,长度可变,可以存储多种类型的数据,而数组长度不可变,只能存储单一类型的元素 用一 ...

  9. 在SQLServer使用触发器实现数据完整性

    1.实现数据完整性的手段 在sqlserver中,在服务器端实现数据完整性主要有两种手段:一种是在创建表时定义数据完整性,主要分为:实体完整性.域完整性.和级联参照完整性:实现的手段是创建主键约束.唯 ...

  10. 微信小程序开发系列一:微信小程序的申请和开发环境的搭建

    我最近也刚刚开始微信小程序的开发,想把我自学的一些心得写出来分享给大家. 这是第一篇,从零开始学习微信小程序开发.主要是小程序的注册和开发环境的搭建. 首先我们要在下列网址申请一个属于自己的微信小程序 ...