洛谷 P1351 联合权值
题目描述
无向连通图G 有n 个点,n - 1 条边。点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 。图上两点( u , v ) 的距离定义为u 点到v 点的最短距离。对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu×Wv 的联合权值。
请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?
输入输出格式
输入格式:
输入文件名为link .in。
第一行包含1 个整数n 。
接下来n - 1 行,每行包含 2 个用空格隔开的正整数u 、v ,表示编号为 u 和编号为v 的点之间有边相连。
最后1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示图G 上编号为i 的点的权值为W i 。
输出格式:
输出文件名为link .out 。
输出共1 行,包含2 个整数,之间用一个空格隔开,依次为图G 上联合权值的最大值
和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007 取余。
输入输出样例
5
1 2
2 3
3 4
4 5
1 5 2 3 10
20 74
说明
本例输入的图如上所示,距离为2 的有序点对有( 1,3) 、( 2,4) 、( 3,1) 、( 3,5) 、( 4,2) 、( 5,3) 。
其联合权值分别为2 、15、2 、20、15、20。其中最大的是20,总和为74。
【数据说明】
对于30% 的数据,1 < n≤ 100 ;
对于60% 的数据,1 < n≤ 2000;
对于100%的数据,1 < n≤ 200 , 000 ,0 < wi≤ 10, 000 。
#include <cstdio>
#define zhx 10007
#define N 200000
int x[N+],y[N+],w[N+],c[N+],b[N+],ans1,ans2,n;
int max(int a,int b)
{
return a>b?a:b;
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++) scanf("%d%d",&x[i],&y[i]);
for(int i=;i<=n;i++) scanf("%d",&w[i]);
for(int i=;i<n;i++)
{
ans2=(ans2+w[x[i]]*b[y[i]]+w[y[i]]*b[x[i]])%zhx;
b[x[i]]=(b[x[i]]+w[y[i]])%zhx;
b[y[i]]=(b[y[i]]+w[x[i]])%zhx;
ans1=max(ans1,max(w[x[i]]*c[y[i]],w[y[i]]*c[x[i]]));
if(w[x[i]]>c[y[i]]) c[y[i]]=w[x[i]];
if(w[y[i]]>c[x[i]]) c[x[i]]=w[y[i]];
}
printf("%d %d\n",ans1,ans2*%zhx);
return ;
}
洛谷 P1351 联合权值的更多相关文章
- 洛谷 P1351 联合权值 题解
P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\),每条 ...
- [NOIP2014] 提高组 洛谷P1351 联合权值
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- 洛谷——P1351 联合权值
https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...
- 『题解』洛谷P1351 联合权值
更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...
- 洛谷P1351 联合权值(树形dp)
题意 题目链接 Sol 一道很简单的树形dp,然而被我写的这么长 分别记录下距离为\(1/2\)的点数,权值和,最大值.以及相邻儿子之间的贡献. 树形dp一波.. #include<bits/s ...
- 洛谷 P1351 联合权值 —— 树形DP
题目:https://www.luogu.org/problemnew/show/P1351 树形DP,别忘了子树之间的情况(拐一下距离为2). 代码如下: #include<iostream& ...
- 洛谷P1351 联合权值
\(\Large\textbf{Description:}\) \(\large一棵树,父子之间距离为1,求距离为2的两点点权之积的最大值与和.\) \(\Large\textbf{Solution: ...
- 洛谷 1351 联合权值——树形dp
题目:https://www.luogu.org/problemnew/show/P1351 对拍了一下,才发现自己漏掉了那种拐弯的情况. #include<iostream> #incl ...
- P1351 联合权值(树形dp)
P1351 联合权值 想刷道水题还交了3次.....丢人 (1.没想到有两个点都是儿子的状况 2.到处乱%(大雾)) 先dfs一遍处理出父亲$fa[x]$ 蓝后再一遍dfs,搞搞就出来了. #incl ...
随机推荐
- Linux下PostgreSQL 的安装与配置
一.简介 PostgreSQL 是一种非常复杂的对象-关系型数据库管理系统(ORDBMS),也是目前功能最强大,特性最丰富和最复杂的自由软件数据库系统.有些特性甚至连商业数据库都不具备.这个起源于伯克 ...
- 字符指针unsigned char *ch_p
指向类型为unsigned char的指针变量叫字符指针. 例如: unsigned char ch = 'a'; unsigned char *ch_p = &ch;那么指针变量ch_p就是 ...
- python学习笔记2-条件语句
#条件语句 ''' if 判断条件: 执行语句…… else: 执行语句…… ''' flag = False name = 'python' if name == 'python': # 判断变量否 ...
- UVa 1336 Fixing the Great Wall (区间DP)
题意:给定 n 个结点,表示要修复的点,然后机器人每秒以 v 的速度移动,初始位置在 x,然后修复结点时不花费时间,但是如果有的结点暂时没修复, 那么每秒它的费用都会增加 d,修复要花费 c,坐标是 ...
- JavaScript面向对象轻松入门之综合
javascrpit面向对象之综合 这一章是对前几章的一个总结,通过一个案例来综合认识javascript面向对象的基本用法 需求: 几乎所有的web应用都需要保存数据一些到本地,那么我们就来 ...
- 洛谷 - P1012 - 拼数 - 排序
https://www.luogu.org/problemnew/show/P1012 这道水题居然翻车了,还发现不了bug,服气了.并不是空字符一定比不空要好,要取决于替代它的字符的大小.所以还是直 ...
- Codeforces Round #422 (Div. 2)D. My pretty girl Noora(递推+数论)
传送门 题意 对于n个女孩,每次分成x人/组,每组比较次数为\(\frac{x(x+1)}{2}\),直到剩余1人 计算\[\sum_{i=l}^{r}t^{i-l}f(i)\],其中f(i)代表i个 ...
- vector理解一波~~~
Vector: 头文件: #include<vector> using namespacestd; 定义: vector<类型>q;//类同于 "类型 q[];&q ...
- Cocos2d-html5游戏开发,常用工具集合
代码编辑器IDEWebStorm (Windows, Mac) Cocos2d-html5官方团队在用,非常优秀的工具,请大家支持正版动画编辑器 Animation EditorSpriteHelpe ...
- 工作中常用css样式总结
一.HTML隐藏文本输入框 有三种方法: 1.<input type="hidden" value=""> 这是对任何元素都起作用的: 2.< ...